def save_model(model: Model, path: str, include_optimizer: bool = False, meta: Optional[Dict[str, object]] = None): if not meta: meta = {} meta["include_optimizer"] = include_optimizer os.makedirs(path + "/assets", exist_ok=True) with open(f"{path}/assets/saved_model.json", "w") as f: json.dump(json.loads(model.to_json()), f, indent=2) with open(f"{path}/meta.json", "w") as f: json.dump(meta, f, indent=2) model.save(path, include_optimizer=include_optimizer)
def writeCSV2(variator: Variator, model: Model, counter=[0, 0]): history = variator.histories[-1] score = model.evaluate(tX, tY, verbose=0) acc = history.history['acc'][-1] val_acc = history.history['val_acc'][-1] print("counter: " + str(counter[1])) if score[1] > counter[1]: counter[1] = score[1] model_json = model.to_json() with open("Models/JSON/modelEvCluster_Architecure.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save("Models/Weights/bestEvModelCluster.hd5") with open("Logs/modelStats.csv", "a") as f: if counter[0] == 0: counter[0] += 1 f.write("Model,acc,val_acc,test_acc\n") f.write(variator.currentParameters['modelName'] + "," + str(acc) + "," + str(val_acc) + "," + str(score[1])) f.write("\n")
def save_model_json(model: Model, log_dir): filename = "{0}_config.json".format(model.name) filename = os.path.join(log_dir, filename) with open(filename, "w") as file: file.write(model.to_json())