예제 #1
0
 def cal_scores_indices(scores_to_0,scores_to_1):
   next_beam_scores_1, word_indices_1 = nn_ops.top_k(scores_to_0, k=5)
   print ("ori next_beam_scores_1,word_indices_1",next_beam_scores_1)
   print ("ori word_indices_1",word_indices_1)
   next_beam_scores_2, word_indices_2 = nn_ops.top_k(scores_to_1, k=5)
   next_beam_scores=tf.concat([next_beam_scores_1,next_beam_scores_2],1)
   word_indices=tf.concat([word_indices_1,word_indices_2+9*vocab_size],1)
   return next_beam_scores,word_indices
def _batch_sort_vector(x, ascending=True, name=None):
    with ops.name_scope(name, "sort_each_row", [x]):
        x = ops.convert_to_tensor(x, name="x")
        n = array_ops.shape(x)[-1]
        if ascending:
            y, _ = nn_ops.top_k(-x, k=n, sorted=True)
            y = -y
        else:
            y, _ = nn_ops.top_k(x, k=n, sorted=True)
        y.set_shape(x.shape)
        return y
예제 #3
0
def _batch_sort_vector(x, ascending=True, name=None):
  with ops.name_scope(name, "sort_each_row", [x]):
    x = ops.convert_to_tensor(x, name="x")
    n = array_ops.shape(x)[-1]
    if ascending:
      y, _ = nn_ops.top_k(-x, k=n, sorted=True)
      y = -y
    else:
      y, _ = nn_ops.top_k(x, k=n, sorted=True)
    y.set_shape(x.shape)
    return y
예제 #4
0
파일: utils.py 프로젝트: Helicqin/ranking
def sort_by_scores(scores, features_list, topn=None):
    """Sorts example features according to per-example scores.

  Args:
    scores: A `Tensor` of shape [batch_size, list_size] representing the
      per-example scores.
    features_list: A list of `Tensor`s with the same shape as scores to be
      sorted.
    topn: An integer as the cutoff of examples in the sorted list.

  Returns:
    A list of `Tensor`s as the list of sorted features by `scores`.
  """
    scores = ops.convert_to_tensor(scores)
    scores.get_shape().assert_has_rank(2)
    batch_size, list_size = array_ops.unstack(array_ops.shape(scores))
    if topn is None:
        topn = list_size
    topn = math_ops.minimum(topn, list_size)
    _, indices = nn_ops.top_k(scores, topn, sorted=True)
    list_offsets = array_ops.expand_dims(
        math_ops.range(batch_size) * list_size, 1)
    # The shape of `indices` is [batch_size, topn] and the shape of
    # `list_offsets` is [batch_size, 1]. Broadcasting is used here.
    gather_indices = array_ops.reshape(indices + list_offsets, [-1])
    output_shape = array_ops.stack([batch_size, topn])
    # Each feature is first flattened to a 1-D vector and then gathered by the
    # indices from sorted scores and then re-shaped.
    return [
        array_ops.reshape(
            array_ops.gather(array_ops.reshape(feature, [-1]), gather_indices),
            output_shape) for feature in features_list
    ]
예제 #5
0
  def get_best(self, n):
    """Return the indices and values of the n highest scores in the TopN."""

    def refresh_shortlist():
      """Update the shortlist with the highest scores in id_to_score."""
      new_scores, new_ids = nn_ops.top_k(self.id_to_score, self.shortlist_size)
      smallest_new_score = math_ops.reduce_min(new_scores)
      new_length = math_ops.reduce_sum(
          math_ops.to_int32(math_ops.greater(new_scores, dtypes.float32.min)))
      u1 = self.sl_ids.assign(
          math_ops.to_int64(array_ops.concat([[new_length], new_ids], 0)))
      u2 = self.sl_scores.assign(
          array_ops.concat([[smallest_new_score], new_scores], 0))
      self.last_ops = [u1, u2]
      return control_flow_ops.group(u1, u2)

    # We only need to refresh the shortlist if n is greater than the
    # current shortlist size (which is stored in sl_ids[0]).
    with ops.control_dependencies(self.last_ops):
      cond_op = control_flow_ops.cond(n > self.sl_ids[0], refresh_shortlist,
                                      control_flow_ops.no_op)
      with ops.control_dependencies([cond_op]):
        topk_values, topk_indices = nn_ops.top_k(
            self.sl_scores,
            math_ops.minimum(n, math_ops.to_int32(self.sl_ids[0])))
        # topk_indices are the indices into the shortlist, we want to return
        # the indices into id_to_score
        gathered_indices = array_ops.gather(self.sl_ids, topk_indices)
        return gathered_indices, topk_values
예제 #6
0
 def testTopKInfinities(self):
     """Tests that positive and negative infinity sort correctly."""
     supported_types = set([
         dtypes.bfloat16.as_numpy_dtype, np.float16, np.float32, np.float64
     ])
     for dtype in supported_types.intersection(self.numeric_types):
         # TPU implementation is not supported for double precision
         if (dtype == np.float64
                 or dtype == np.float16) and self.device == "TPU":
             continue
         with self.session() as sess:
             p = array_ops.placeholder(dtype)
             with self.test_scope():
                 topk = nn_ops.top_k(p, k=6)
             results = sess.run(
                 topk, {
                     p:
                     np.array(
                         [1, 2, float("inf"), -float("inf"), -1, -2],
                         dtype=dtype)
                 })
             self.assertAllEqual(
                 np.array(
                     [float("inf"), 2.0, 1.0, -1.0, -2.0, -float("inf")],
                     dtype=dtype), results[0])
             self.assertEqual(list([2, 1, 0, 4, 5, 3]), list(results[1]))
예제 #7
0
파일: wta_impl.py 프로젝트: wenkesj/alchemy
 def call(self, inputs, training=False):
     input_dim = inputs.get_shape()[-1].value
     _, indices = nn_ops.top_k(inputs, self.k, sorted=False)
     mask = array_ops.one_hot(indices, input_dim, axis=-1)
     mask = math_ops.reduce_sum(mask, axis=-2)
     return utils.smart_cond(training, lambda: mask * inputs,
                             lambda: array_ops.identity(inputs))
예제 #8
0
파일: utils.py 프로젝트: Helicqin/ranking
def shuffle_valid_indices(is_valid, seed=None):
    """Returns a shuffle of indices with valid ones on top.

  Args:
    is_valid: A boolen `Tensor` for entry validity with shape [batch_size,
      list_size].
    seed: An int for random seed at the op level. It works together with the
      seed at global graph level together to determine the random number
      generation. See `tf.set_random_seed`.

  Returns:
    A tensor of indices with shape [batch_size, list_size, 2]. The returned
    tensor can be used with `tf.gather_nd` and `tf.scatter_nd` to compose a new
    [batch_size, list_size] tensor. The values in the last dimension are the
    indices for an element in the input tensor.
  """
    is_valid = ops.convert_to_tensor(is_valid)
    is_valid.get_shape().assert_has_rank(2)
    output_shape = array_ops.shape(is_valid)
    rand = array_ops.where(is_valid,
                           random_ops.random_uniform(output_shape, seed=seed),
                           array_ops.ones(output_shape) * -1e-6)
    # shape(indices) = [batch_size, list_size]
    _, indices = nn_ops.top_k(rand, output_shape[1], sorted=True)
    # shape(batch_ids) = [batch_size, list_size]
    batch_ids = array_ops.ones_like(indices) * array_ops.expand_dims(
        math_ops.range(output_shape[0]), 1)
    return array_ops.concat([
        array_ops.expand_dims(batch_ids, 2),
        array_ops.expand_dims(indices, 2)
    ],
                            axis=2)
예제 #9
0
 def testKNegative(self):
     inputs = [[0.1, 0.2], [0.3, 0.4]]
     with self.session(use_gpu=True):
         k = array_ops.placeholder(dtypes.int32)
         values, _ = nn_ops.top_k(inputs, k)
         with self.assertRaisesOpError("Need k >= 0, got -7"):
             values.eval(feed_dict={k: -7})
예제 #10
0
 def benchmarkTopK(self):
     for (m, n, p,
          use_gpu) in itertools.product([128],
                                        [10, 100, 1000, 10000, 100000],
                                        [0.001, 0.01, 0.5, 0.99, 1.0],
                                        [False, True]):
         k = int(p * n)
         if k == 0:
             continue
         name = "m_%d_n_%d_k_%g_use_gpu_%s" % (m, n, k, use_gpu)
         device = "/%s:0" % ("gpu" if use_gpu else "cpu")
         with ops.Graph().as_default():
             with ops.device(device):
                 x = random_ops.random_uniform((m, n))
                 v = resource_variable_ops.ResourceVariable(x)
                 op = nn_ops.top_k(v, k)
             with session.Session() as sess:
                 v.initializer.run()
                 r = self.run_op_benchmark(sess,
                                           op,
                                           min_iters=100,
                                           name=name)
                 gb_processed_input = m * n / 1.0e9
                 throughput = gb_processed_input / r["wall_time"]
                 print("Benchmark: %s \t wall_time: %0.03g s \t "
                       "Throughput: %0.03g GB/s" %
                       (name, r["wall_time"], throughput))
                 sys.stdout.flush()
예제 #11
0
    def get_best(self, n):
        """Return the indices and values of the n highest scores in the TopN."""
        def refresh_shortlist():
            """Update the shortlist with the highest scores in id_to_score."""
            new_scores, new_ids = nn_ops.top_k(self.id_to_score,
                                               self.shortlist_size)
            smallest_new_score = math_ops.reduce_min(new_scores)
            new_length = math_ops.reduce_sum(
                math_ops.to_int32(
                    math_ops.greater(new_scores, dtypes.float32.min)))
            u1 = self.sl_ids.assign(
                math_ops.to_int64(array_ops.concat([[new_length], new_ids],
                                                   0)))
            u2 = self.sl_scores.assign(
                array_ops.concat([[smallest_new_score], new_scores], 0))
            self.last_ops = [u1, u2]
            return control_flow_ops.group(u1, u2)

        # We only need to refresh the shortlist if n is greater than the
        # current shortlist size (which is stored in sl_ids[0]).
        with ops.control_dependencies(self.last_ops):
            cond_op = control_flow_ops.cond(n > self.sl_ids[0],
                                            refresh_shortlist,
                                            control_flow_ops.no_op)
            with ops.control_dependencies([cond_op]):
                topk_values, topk_indices = nn_ops.top_k(
                    self.sl_scores,
                    math_ops.minimum(n, math_ops.to_int32(self.sl_ids[0])))
                # topk_indices are the indices into the shortlist, we want to return
                # the indices into id_to_score
                gathered_indices = array_ops.gather(self.sl_ids, topk_indices)
                return gathered_indices, topk_values
예제 #12
0
 def GetParams(self):
     """Testing that output type of engine using Top-K is set correctly."""
     dtype = dtypes.float32
     input_name = "input"
     input_dims = [100, 100]
     k = 5
     g = ops.Graph()
     with g.as_default():
         x = array_ops.placeholder(dtype=dtype,
                                   shape=input_dims,
                                   name=input_name)
         k_tensor = constant_op.constant(k,
                                         dtype=dtypes.int32,
                                         name="Const")
         values, indices = nn_ops.top_k(x, k_tensor, name="TopK")
         # Reshape will act as a layer between the TopK output and the engine
         # output, requiring the output tensor of reshape to be set explicitly to
         # int32.
         indices = array_ops.reshape(indices, [100, 1, 5], name="Reshape")
         values = array_ops.identity(values, name="output_values")
         indices = array_ops.identity(indices, name="output_indices")
     return trt_test.TfTrtIntegrationTestParams(
         gdef=g.as_graph_def(),
         input_names=[input_name],
         input_dims=[[input_dims]],
         output_names=["output_values", "output_indices"],
         expected_output_dims=[[[100, k], [100, 1, k]]])
예제 #13
0
  def _cond_restrict_fn(self):
    """
    This will only be execute when size of variable is larger than trigger.
    """
    restrict_var_ops, restrict_status_ops, restrict_slot_ops = [], [], []

    for i, dev in enumerate(self.freq_var.devices):
      with ops.device(dev):
        partial_keys, partial_counts = self.freq_var.tables[i].export()
        partial_reserved = int(self._num_reserved / self.freq_var.shard_num)
        partial_counts = array_ops.reshape(partial_counts, (-1,))
        first_dim = array_ops.shape(partial_counts)[0]

        k_on_top = math_ops.cast(first_dim - partial_reserved,
                                 dtype=dtypes.int32)
        k_on_top = math_ops.maximum(k_on_top, 0)
        _, removed_key_indices = nn_ops.top_k(-partial_counts,
                                              k_on_top,
                                              sorted=False)
        removed_keys = array_ops.gather(partial_keys, removed_key_indices)

        restrict_var_ops.append(self.var.tables[i].remove(removed_keys))
        restrict_status_ops.append(self.freq_var.tables[i].remove(removed_keys))
        for slot_param in self.params_in_slots:
          restrict_slot_ops.append(slot_param.tables[i].remove(removed_keys))
    return control_flow_ops.group(restrict_var_ops, restrict_status_ops,
                                  restrict_slot_ops)
예제 #14
0
def allocmem(u_tm1, ww_tm1, wr_tm1_ls, fg_ls):
    """Allocate Memory.

    Parameters
    ----------
    u_tm1 : `[batch_size, mem_size]`.
    ww_tm1 : `[batch_size, mem_size]`.
    wr_tm1_ls : a list of R read weights. each element in the list has size of:
        `[batch_size, mem_size]`.
    fg_ls : a list of R free gates. each element in the list has size of:
        `[batch_size, 1]`.

    Returns
    -------
    u : `[batch_size, mem_size]`.
    alloc_vec : `[batch_size, mem_size]`
    """
    mem_size = shape(u_tm1)[1]
    retention = functools.reduce(
        multiply, [1 - fg * wr_tm1 for fg, wr_tm1 in zip(fg_ls, wr_tm1_ls)])
    u = (u_tm1 + ww_tm1 - u_tm1 * ww_tm1) * retention
    asd_u, asd_u_idx = top_k(u, k=mem_size)

    idx = reverse(asd_u_idx, axis=[1])
    prod_phi = cumprod(reverse(asd_u, axis=[1]), axis=1, exclusive=True)
    alloc_vec = (1 - u) * prod_phi
    return alloc_vec, u
예제 #15
0
        def dnw_fn(mask, sparsity, dtype):
            """Creates a mask with smallest magnitudes with deterministic sparsity.

      Args:
        mask: tf.Tensor, used to obtain correct corresponding gradient.
        sparsity: float, between 0 and 1.
        dtype: tf.dtype, type of the return value.

      Returns:
        tf.Tensor
      """
            del dtype
            var_name = sparse_utils.mask_extract_name_fn(mask.name)
            v = vars_dict[var_name]
            score_drop = math_ops.abs(v)
            n_total = np.prod(score_drop.shape.as_list())
            n_prune = sparse_utils.get_n_zeros(n_total, sparsity)
            n_keep = n_total - n_prune

            # Sort the entire array since the k needs to be constant for TPU.
            _, sorted_indices = nn_ops.top_k(array_ops.reshape(
                score_drop, [-1]),
                                             k=n_total)
            sorted_indices_ex = array_ops.expand_dims(sorted_indices, 1)
            # We will have zeros after having `n_keep` many ones.
            new_values = array_ops.where(
                math_ops.range(n_total) < n_keep,
                array_ops.ones_like(sorted_indices, dtype=mask.dtype),
                array_ops.zeros_like(sorted_indices, dtype=mask.dtype))
            new_mask = array_ops.scatter_nd(sorted_indices_ex, new_values,
                                            new_values.shape)
            return array_ops.reshape(new_mask, mask.shape)
예제 #16
0
파일: topk_test.py 프로젝트: Harryi0/tinyML
 def GraphFn(self, x):
     k = 5
     k_tensor = constant_op.constant(k, dtype=dtypes.int32, name="Const")
     values, indices = nn_ops.top_k(x, k_tensor, name="TopK")
     values = array_ops.identity(values, name="output_0")
     indices = array_ops.identity(indices, name="output_1")
     return values, indices
예제 #17
0
 def testKNegative(self):
   inputs = [[0.1, 0.2], [0.3, 0.4]]
   with self.test_session(use_gpu=True):
     k = array_ops.placeholder(dtypes.int32)
     values, _ = nn_ops.top_k(inputs, k)
     with self.assertRaisesOpError("Need k >= 0, got -7"):
       values.eval(feed_dict={k: -7})
예제 #18
0
    def testTopKInfinities(self):
        """Tests that positive and negative infinity sort correctly."""
        # TODO(b/26783907): The Sort HLO is not implemented on CPU or GPU.
        if self.device in ["XLA_CPU", "XLA_GPU"]:
            return

        # Only bfloat16 is implemented.
        bfloat16 = dtypes.bfloat16.as_numpy_dtype
        if bfloat16 not in self.numeric_types:
            return

        with self.test_session() as sess:
            p = array_ops.placeholder(dtypes.bfloat16)
            with self.test_scope():
                topk = nn_ops.top_k(p, k=6)
            results = sess.run(
                topk, {
                    p:
                    np.array([1, 2, float("inf"), -float("inf"), -1, -2],
                             dtype=bfloat16)
                })
            self.assertAllEqual(
                np.array([float("inf"), 2.0, 1.0, -1.0, -2.0, -float("inf")],
                         dtype=bfloat16), results[0])
            self.assertEqual(list([2, 1, 0, 4, 5, 3]), list(results[1]))
예제 #19
0
def _descending_sort(values, axis, return_argsort=False):
  """Sorts values in reverse using `top_k`.
  Args:
    values: Tensor of numeric values.
    axis: Index of the axis which values should be sorted along.
    return_argsort: If False, return the sorted values. If True, return the
        indices that would sort the values.
  Returns:
    The sorted values.
  """
  k = array_ops.shape(values)[axis]
  rank = array_ops.rank(values)
  static_rank = values.shape.ndims
  # Fast path: sorting the last axis.
  if axis == -1 or axis + 1 == values.get_shape().ndims:
    top_k_input = values
    transposition = None
  else:
    # Otherwise, transpose the array. Swap axes `axis` and `rank - 1`.
    if axis < 0:
      # Calculate the actual axis index if counting from the end. Use the static
      # rank if available, or else make the axis back into a tensor.
      axis += static_rank or rank
    if static_rank is not None:
      # Prefer to calculate the transposition array in NumPy and make it a
      # constant.
      transposition = constant_op.constant(
          np.r_[
              # Axes up to axis are unchanged.
              np.arange(axis),
              # Swap axis and rank - 1.
              [static_rank - 1],
              # Axes in [axis + 1, rank - 1) are unchanged.
              np.arange(axis + 1, static_rank - 1),
              # Swap axis and rank - 1.
              [axis]],
          name='transposition')
    else:
      # Generate the transposition array from the tensors.
      transposition = array_ops.concat(
          [
              # Axes up to axis are unchanged.
              math_ops.range(axis),
              # Swap axis and rank - 1.
              [rank - 1],
              # Axes in [axis + 1, rank - 1) are unchanged.
              math_ops.range(axis + 1, rank - 1),
              # Swap axis and rank - 1.
              [axis]
          ],
          axis=0)
    top_k_input = array_ops.transpose(values, transposition)

  values, indices = nn_ops.top_k(top_k_input, k)
  return_value = indices if return_argsort else values
  if transposition is not None:
    # transposition contains a single cycle of length 2 (swapping 2 elements),
    # so it is an involution (it is its own inverse).
    return_value = array_ops.transpose(return_value, transposition)
  return return_value
예제 #20
0
 def cal_scores_indices_t1(scores_final,next_beam_size):
     next_beam_scores_1, word_indices_1=nn_ops.top_k(scores_final, k=5)
     #next_beam_scores_1, word_indices_1=sample(next_beam_scores_1,word_indices_1)
     print ("next_beam_scores_1", next_beam_scores_1)
     print ("word_indices_1",word_indices_1)
     next_beam_scores=tf.concat([next_beam_scores_1,next_beam_scores_1],1)
     word_indices=tf.concat([word_indices_1,word_indices_1+5*vocab_size],1)
     return next_beam_scores, word_indices
예제 #21
0
    def _validateTopK(self,
                      inputs,
                      k,
                      expected_values,
                      expected_indices,
                      sorted=True):  # pylint: disable=redefined-builtin
        np_expected_values = np.array(expected_values)
        np_expected_indices = np.array(expected_indices)
        with self.cached_session(use_gpu=True) as sess:
            values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted)
            values, indices = self.evaluate([values_op, indices_op])

            self.assertShapeEqual(np_expected_values, values_op)
            self.assertShapeEqual(np_expected_indices, indices_op)

            if sorted:
                self.assertAllClose(np_expected_values, values)
                # Do some special casing of equality of indices: if indices
                # are not the same, but values are floating type, ensure that
                # the values are within epsilon of each other.
                if not np.issubdtype(np_expected_values.dtype, np.floating):
                    # Values are not floating point type; check indices exactly
                    self.assertAllEqual(np_expected_indices, indices)
                else:
                    # Values are floating point; indices may be swapped for
                    # values near each other.
                    indices_not_equal = np_expected_indices != indices
                    if np.any(indices_not_equal):
                        values_unsure = values[indices_not_equal]
                        expected_values_unsure = expected_values[
                            indices_not_equal]
                        self.assertAllClose(expected_values_unsure,
                                            values_unsure)
            else:
                np_inputs = np.array(inputs)

                # Check that the indices are valid.
                for result_index, src_index in np.ndenumerate(indices):
                    value = values[result_index]
                    expected_value = np_inputs[result_index[0], src_index]
                    np.testing.assert_almost_equal(value, expected_value)

                # Check that if two elements are equal, the lower-index element appears
                # first.
                shape = values.shape
                for batch_index in range(shape[0]):
                    for index in range(shape[1] - 1):
                        if np.isclose(values[batch_index, index],
                                      values[batch_index, index + 1]):
                            self.assertLess(indices[batch_index, index],
                                            indices[batch_index, index + 1])

                # Now check the results, ignoring order.
                self.assertAllEqual(np.sort(np_expected_indices),
                                    np.sort(indices))
                self.assertAllClose(np.sort(np_expected_values),
                                    np.sort(values))
예제 #22
0
 def testTopKGradients(self):
   with self.test_session(use_gpu=True) as sess:
     inputs = array_ops.placeholder(dtypes.int32, shape=[2, 5])
     values, _ = nn_ops.top_k(inputs, 3)
     grad = sess.run(
         gradients_impl.gradients(
             values, inputs, grad_ys=[[[1, 2, 3], [4, 5, 6]]]),
         feed_dict={inputs: [[2, -1, 1000, 3, 4], [1, 5, 2, 4, 3]]})[0]
   self.assertEqual(grad.tolist(), [[0, 0, 1, 3, 2], [0, 4, 0, 5, 6]])
예제 #23
0
 def testTopKGradients(self):
   with self.test_session(use_gpu=True) as sess:
     inputs = array_ops.placeholder(dtypes.int32, shape=[2, 5])
     values, _ = nn_ops.top_k(inputs, 3)
     grad = sess.run(
         gradients_impl.gradients(
             values, inputs, grad_ys=[[[1, 2, 3], [4, 5, 6]]]),
         feed_dict={inputs: [[2, -1, 1000, 3, 4], [1, 5, 2, 4, 3]]})[0]
   self.assertEqual(grad.tolist(), [[0, 0, 1, 3, 2], [0, 4, 0, 5, 6]])
예제 #24
0
def prune_by_bbb(variable_metadata, percentage):
    """Prune a percentage of variables based on their signal to noise ratios.

  Arguments:
    variable_metadata: `list` of `bbb._VariableMetadata`, suggest using
        `bbb.get_variable_metadata()`.
    percentage: a `tf.Tensor` that is scalar representing what percentage
        of variables to prune.
  """
    if not variable_metadata:
        return []

    signal_to_noise_ratios = []
    variable_estimates = []
    variable_info = []

    # get signal to noise and mean posterior
    for meta in variable_metadata:
        posterior_dist = meta.posterior
        signal_to_noise_ratios.append(
            array_utils.flatten(
                distribution_utils.signal_to_noise_ratio(posterior_dist)))
        variable_estimates.append(array_utils.flatten(meta.posterior_estimate))
        variable_info.append((meta.raw_variable_name, meta.raw_variable_shape))

    # flatten variables
    flat_variable_estimates = array_ops.concat(variable_estimates, 0)
    flat_signal_to_noise_ratios = array_ops.concat(signal_to_noise_ratios, 0)
    flat_variable_size = flat_variable_estimates.get_shape().as_list()[-1]
    flat_drop_size = math_ops.cast(flat_variable_size * percentage,
                                   dtypes.int32)

    # sort by signal to noise ratio
    _, indices = nn_ops.top_k(flat_signal_to_noise_ratios,
                              k=flat_variable_size,
                              sorted=True)
    zero_indices = array_ops.expand_dims(indices[:flat_drop_size], -1)
    mask = math_ops.cast(
        sparse_ops.sparse_to_dense(zero_indices, [flat_variable_size],
                                   sparse_values=0,
                                   default_value=1,
                                   validate_indices=False),
        flat_variable_estimates.dtype)
    flat_variable_estimates *= mask

    # unflatten variables
    start = 0
    dsts = []
    for name, shape in variable_info:
        end = array_utils.product(shape)
        dst = gen_array_ops.reshape(flat_variable_estimates[start:start + end],
                                    shape,
                                    name=name)
        dsts.append(dst)
        start += end
    return dsts
예제 #25
0
파일: wta_impl.py 프로젝트: wenkesj/alchemy
 def call(self, inputs, training=False):
     input_dim = inputs.get_shape()[-1].value
     k = random_ops.random_uniform([1],
                                   maxval=input_dim,
                                   dtype=dtypes.int32)[0]
     _, indices = nn_ops.top_k(inputs, k, sorted=False)
     mask = array_ops.one_hot(indices, input_dim, axis=-1)
     mask = math_ops.reduce_sum(mask, axis=-2)
     return utils.smart_cond(training, lambda: mask * inputs,
                             lambda: array_ops.identity(inputs))
예제 #26
0
파일: topk_test.py 프로젝트: Harryi0/tinyML
 def GraphFn(self, x):
     k = 5
     k_tensor = constant_op.constant(k, dtype=dtypes.int32, name="Const")
     values, indices = nn_ops.top_k(x, k_tensor, name="TopK")
     # Reshape will act as a layer between the TopK output and the engine
     # output, requiring the output tensor of reshape to be set explicitly to
     # int32.
     indices = array_ops.reshape(indices, [100, 1, 5], name="Reshape")
     values = array_ops.identity(values, name="output_0")
     indices = array_ops.identity(indices, name="output_1")
     return values, indices
예제 #27
0
def _sort_rows(matrix, num_rows):
    """Sort matrix rows by the last column.
  Args:
      matrix: a matrix of values (row,col).
      num_rows: (int) number of sorted rows to return from the matrix.
  Returns:
      Tensor (num_rows, col) of the sorted matrix top K rows.
  """
    tmatrix = array_ops.transpose(matrix, [1, 0])
    sorted_tmatrix = nn_ops.top_k(tmatrix, num_rows)[0]
    return array_ops.transpose(sorted_tmatrix, [1, 0])
예제 #28
0
 def testTopKGradients(self):
   with self.session(use_gpu=True) as sess:
     inputs = array_ops.placeholder(dtypes.float32, shape=[2, 5])
     values, _ = nn_ops.top_k(inputs, 3)
     grad = sess.run(
         gradients_impl.gradients(
             values, inputs, grad_ys=[[[1., 2., 3.], [4., 5., 6.]]]),
         feed_dict={inputs: [[2., -1., 1000., 3., 4.],
                             [1., 5., 2., 4., 3.]]})[0]
   self.assertEqual(
       grad.tolist(), [[0., 0., 1., 3., 2.], [0., 4., 0., 5., 6.]])
예제 #29
0
  def _validateTopK(self,
                    inputs,
                    k,
                    expected_values,
                    expected_indices,
                    sorted=True):  # pylint: disable=redefined-builtin
    np_expected_values = np.array(expected_values)
    np_expected_indices = np.array(expected_indices)
    with self.test_session(use_gpu=True) as sess:
      values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted)
      values, indices = sess.run([values_op, indices_op])

      self.assertShapeEqual(np_expected_values, values_op)
      self.assertShapeEqual(np_expected_indices, indices_op)

      if sorted:
        self.assertAllClose(np_expected_values, values)
        # Do some special casing of equality of indices: if indices
        # are not the same, but values are floating type, ensure that
        # the values are within epsilon of each other.
        if not np.issubdtype(np_expected_values.dtype, np.float):
          # Values are not floating point type; check indices exactly
          self.assertAllEqual(np_expected_indices, indices)
        else:
          # Values are floating point; indices may be swapped for
          # values near each other.
          indices_not_equal = np_expected_indices != indices
          if np.any(indices_not_equal):
            values_unsure = values[indices_not_equal]
            expected_values_unsure = expected_values[indices_not_equal]
            self.assertAllClose(expected_values_unsure, values_unsure)
      else:
        np_inputs = np.array(inputs)

        # Check that the indices are valid.
        for result_index, src_index in np.ndenumerate(indices):
          value = values[result_index]
          expected_value = np_inputs[result_index[0], src_index]
          np.testing.utils.assert_almost_equal(value, expected_value)

        # Check that if two elements are equal, the lower-index element appears
        # first.
        shape = values.shape
        for batch_index in range(shape[0]):
          for index in range(shape[1] - 1):
            if np.isclose(values[batch_index, index],
                          values[batch_index, index + 1]):
              self.assertLess(indices[batch_index, index],
                              indices[batch_index, index + 1])

        # Now check the results, ignoring order.
        self.assertAllEqual(np.sort(np_expected_indices), np.sort(indices))
        self.assertAllClose(np.sort(np_expected_values), np.sort(values))
예제 #30
0
 def refresh_shortlist():
   """Update the shortlist with the highest scores in id_to_score."""
   new_scores, new_ids = nn_ops.top_k(self.id_to_score, self.shortlist_size)
   smallest_new_score = math_ops.reduce_min(new_scores)
   new_length = math_ops.reduce_sum(
       math_ops.to_int32(math_ops.greater(new_scores, dtypes.float32.min)))
   u1 = self.sl_ids.assign(
       math_ops.to_int64(array_ops.concat([[new_length], new_ids], 0)))
   u2 = self.sl_scores.assign(
       array_ops.concat([[smallest_new_score], new_scores], 0))
   self.last_ops = [u1, u2]
   return control_flow_ops.group(u1, u2)
def _sort_rows(matrix, num_rows):
  """Sort matrix rows by the last column.

  Args:
      matrix: a matrix of values (row,col).
      num_rows: (int) number of sorted rows to return from the matrix.
  Returns:
      Tensor (num_rows, col) of the sorted matrix top K rows.
  """
  tmatrix = array_ops.transpose(matrix, [1, 0])
  sorted_tmatrix = nn_ops.top_k(tmatrix, num_rows)[0]
  return array_ops.transpose(sorted_tmatrix, [1, 0])
예제 #32
0
 def testTopKZeros(self):
   """Tests that positive and negative zeros sort correctly."""
   supported_types = set([dtypes.bfloat16.as_numpy_dtype, np.float32])
   for dtype in supported_types.intersection(self.numeric_types):
     with self.session() as sess:
       p = array_ops.placeholder(dtype)
       with self.test_scope():
         topk = nn_ops.top_k(p, k=4)
       results = sess.run(
           topk,
           {p: np.array([0., -0., 0., 3., -0., -4., 0., -0.], dtype=dtype)})
       self.assertAllEqual(np.array([3., 0., 0., 0.], dtype=dtype), results[0])
       self.assertEqual(list([3, 0, 2, 6]), list(results[1]))
예제 #33
0
def _descending_sort(values, axis):
    """Sorts values in reverse using `top_k`.

  Args:
    values: Tensor of numeric values.
    axis: Index of the axis which values should be sorted along.

  Returns:
    The sorted values.
  """
    k = array_ops.shape(values)[axis]
    rank = array_ops.rank(values)
    # Fast path: sorting the last axis.
    if axis == -1 or axis + 1 == values.get_shape().ndims:
        return nn_ops.top_k(values, k)[0]

    # Otherwise, transpose the array. Swap axes `axis` and `rank - 1`.
    if axis < 0:
        # Make axis a Tensor with the real axis index if needed.
        axis += rank
    transposition = array_ops.concat(
        [
            # Axes up to axis are unchanged.
            math_ops.range(axis),
            # Swap axis and rank - 1.
            [rank - 1],
            # Axes in [axis + 1, rank - 1) are unchanged.
            math_ops.range(axis + 1, rank - 1),
            # Swap axis and rank - 1.
            [axis]
        ],
        axis=0)
    top_k_input = array_ops.transpose(values, transposition)
    values, unused_indices = nn_ops.top_k(top_k_input, k)
    # transposition contains a single cycle of length 2 (swapping 2 elements),
    # so it is an involution (it is its own inverse).
    return array_ops.transpose(values, transposition)
예제 #34
0
    def _update_mask(self, weights, threshold):
        """Updates the mask for a given weight tensor.

    This functions first computes the cdf of the weight tensor, and estimates
    the threshold value such that 'desired_sparsity' fraction of weights
    have magnitude less than the threshold.

    Args:
      weights: The weight tensor that needs to be masked.
      threshold: The current threshold value. The function will compute a new
        threshold and return the exponential moving average using the current
        value of threshold

    Returns:
      new_threshold: The new value of the threshold based on weights, and
        sparsity at the current global_step
      new_mask: A numpy array of the same size and shape as weights containing
        0 or 1 to indicate which of the values in weights falls below
        the threshold

    Raises:
      ValueError: if sparsity is not defined
    """
        if self._sparsity is None:
            raise ValueError('Sparsity variable undefined')

        sparsity = self._get_sparsity(weights.op.name)
        with ops.name_scope(weights.op.name + '_pruning_ops'):
            abs_weights = math_ops.abs(weights)
            k = math_ops.cast(
                math_ops.round(
                    math_ops.cast(array_ops.size(abs_weights), dtypes.float32)
                    * (1 - sparsity)), dtypes.int32)
            # Sort the entire array
            values, _ = nn_ops.top_k(array_ops.reshape(abs_weights, [-1]),
                                     k=array_ops.size(abs_weights))
            # Grab the (k-1) th value
            current_threshold = array_ops.gather(values, k - 1)
            smoothed_threshold = math_ops.add_n([
                math_ops.multiply(current_threshold,
                                  1 - self._spec.threshold_decay),
                math_ops.multiply(threshold, self._spec.threshold_decay)
            ])

            new_mask = math_ops.cast(
                math_ops.greater_equal(abs_weights, smoothed_threshold),
                dtypes.float32)

        return smoothed_threshold, new_mask
예제 #35
0
 def refresh_shortlist():
     """Update the shortlist with the highest scores in id_to_score."""
     new_scores, new_ids = nn_ops.top_k(self.id_to_score,
                                        self.shortlist_size)
     smallest_new_score = math_ops.reduce_min(new_scores)
     new_length = math_ops.reduce_sum(
         math_ops.to_int32(
             math_ops.greater(new_scores, dtypes.float32.min)))
     u1 = self.sl_ids.assign(
         math_ops.to_int64(array_ops.concat([[new_length], new_ids],
                                            0)))
     u2 = self.sl_scores.assign(
         array_ops.concat([[smallest_new_score], new_scores], 0))
     self.last_ops = [u1, u2]
     return control_flow_ops.group(u1, u2)
예제 #36
0
  def _update_mask(self, weights, threshold):
    """Updates the mask for a given weight tensor.

    This functions first computes the cdf of the weight tensor, and estimates
    the threshold value such that 'desired_sparsity' fraction of weights
    have magnitude less than the threshold.

    Args:
      weights: The weight tensor that needs to be masked.
      threshold: The current threshold value. The function will compute a new
        threshold and return the exponential moving average using the current
        value of threshold

    Returns:
      new_threshold: The new value of the threshold based on weights, and
        sparsity at the current global_step
      new_mask: A numpy array of the same size and shape as weights containing
        0 or 1 to indicate which of the values in weights falls below
        the threshold

    Raises:
      ValueError: if sparsity is not defined
    """
    if self._sparsity is None:
      raise ValueError('Sparsity variable undefined')

    sparsity = self._get_sparsity(weights.op.name)
    with ops.name_scope(weights.op.name + '_pruning_ops'):
      abs_weights = math_ops.abs(weights)
      k = math_ops.cast(
          math_ops.round(
              math_ops.cast(array_ops.size(abs_weights), dtypes.float32) *
              (1 - sparsity)), dtypes.int32)
      # Sort the entire array
      values, _ = nn_ops.top_k(
          array_ops.reshape(abs_weights, [-1]), k=array_ops.size(abs_weights))
      # Grab the (k-1) th value
      current_threshold = array_ops.gather(values, k - 1)
      smoothed_threshold = math_ops.add_n([
          math_ops.multiply(current_threshold, 1 - self._spec.threshold_decay),
          math_ops.multiply(threshold, self._spec.threshold_decay)
      ])

      new_mask = math_ops.cast(
          math_ops.greater_equal(abs_weights, smoothed_threshold),
          dtypes.float32)

    return smoothed_threshold, new_mask
예제 #37
0
 def _validateTopK(self,
                   inputs,
                   k,
                   expected_values,
                   expected_indices,
                   sorted=True):
   np_values = np.array(expected_values)
   np_indices = np.array(expected_indices)
   with self.test_session():
     values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted)
     values = values_op.eval()
     indices = indices_op.eval()
     self.assertAllClose(np_values, values)
     self.assertAllEqual(np_indices, indices)
     self.assertShapeEqual(np_values, values_op)
     self.assertShapeEqual(np_indices, indices_op)
예제 #38
0
 def _validateTopK(self,
                   inputs,
                   k,
                   expected_values,
                   expected_indices,
                   sorted=True):
     np_values = np.array(expected_values)
     np_indices = np.array(expected_indices)
     with self.test_session():
         values_op, indices_op = nn_ops.top_k(inputs, k, sorted=sorted)
         values = values_op.eval()
         indices = indices_op.eval()
         self.assertShapeEqual(np_values, values_op)
         self.assertShapeEqual(np_indices, indices_op)
         self.assertAllEqual(np_indices, indices)
         self.assertAllClose(np_values, values)
예제 #39
0
def _filter_top_k(x, k):
  """Filters top-k values in the last dim of x and set the rest to NEG_INF.

  Used for computing top-k prediction values in dense labels (which has the same
  shape as predictions) for recall and precision top-k metrics.

  Args:
    x: tensor with any dimensions.
    k: the number of values to keep.

  Returns:
    tensor with same shape and dtype as x.
  """
  _, top_k_idx = nn_ops.top_k(x, k, sorted=False)
  top_k_mask = math_ops.reduce_sum(
      array_ops.one_hot(top_k_idx, x.shape[-1], axis=-1), axis=-2)
  return x * top_k_mask + NEG_INF * (1 - top_k_mask)
예제 #40
0
def _filter_top_k(x, k):
  """Filters top-k values in the last dim of x and set the rest to NEG_INF.

  Used for computing top-k prediction values in dense labels (which has the same
  shape as predictions) for recall and precision top-k metrics.

  Args:
    x: tensor with any dimensions.
    k: the number of values to keep.

  Returns:
    tensor with same shape and dtype as x.
  """
  _, top_k_idx = nn_ops.top_k(x, k, sorted=False)
  top_k_mask = math_ops.reduce_sum(
      array_ops.one_hot(top_k_idx, array_ops.shape(x)[-1], axis=-1), axis=-2)
  return x * top_k_mask + NEG_INF * (1 - top_k_mask)
예제 #41
0
  def testTopKZeros(self):
    """Tests that positive and negative zeros sort correctly."""
    # Only bfloat16 is implemented.
    bfloat16 = dtypes.bfloat16.as_numpy_dtype
    if bfloat16 not in self.numeric_types:
      return

    with self.cached_session() as sess:
      p = array_ops.placeholder(dtypes.bfloat16)
      with self.test_scope():
        topk = nn_ops.top_k(p, k=4)
      results = sess.run(
          topk,
          {p: np.array([0., -0., 0., 3., -0., -4., 0., -0.], dtype=bfloat16)})
      self.assertAllEqual(
          np.array([3., 0., 0., 0.], dtype=bfloat16), results[0])
      self.assertEqual(list([3, 0, 2, 6]), list(results[1]))
예제 #42
0
  def __init__(self, permutation, validate_args=False, name=None):
    """Creates the `Permute` bijector.

    Args:
      permutation: An `int`-like vector-shaped `Tensor` representing the
        permutation to apply to the rightmost dimension of the transformed
        `Tensor`.
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.
      name: Python `str`, name given to ops managed by this object.

    Raises:
      TypeError: if `not permutation.dtype.is_integer`.
      ValueError: if `permutation` does not contain exactly one of each of
        `{0, 1, ..., d}`.
    """
    with ops.name_scope(name, "permute", values=[permutation]):
      permutation = ops.convert_to_tensor(
          permutation,
          name="permutation")
      if not permutation.dtype.is_integer:
        raise TypeError("permutation.dtype ({}) should be `int`-like.".format(
            permutation.dtype.name))
      p = tensor_util.constant_value(permutation)
      if p is not None:
        if set(p) != set(np.arange(p.size)):
          raise ValueError("Permutation over `d` must contain exactly one of "
                           "each of `{0, 1, ..., d}`.")
      elif validate_args:
        p, _ = nn_ops.top_k(-permutation,
                            k=array_ops.shape(permutation)[-1],
                            sorted=True)
        permutation = control_flow_ops.with_dependencies([
            check_ops.assert_equal(
                -p, math_ops.range(array_ops.size(p)),
                message=("Permutation over `d` must contain exactly one of "
                         "each of `{0, 1, ..., d}`.")),
        ], permutation)
      self._permutation = permutation
      super(Permute, self).__init__(
          forward_min_event_ndims=1,
          is_constant_jacobian=True,
          validate_args=validate_args,
          name=name or "permute")
예제 #43
0
 def GetParams(self):
   """Testing Top-K in TF-TRT conversion."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [100, 100]
   k = 5
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     k_tensor = constant_op.constant(k, dtype=dtypes.int32, name="Const")
     values, indices = nn_ops.top_k(x, k_tensor, name="TopK")
     values = array_ops.identity(values, name="output_values")
     indices = array_ops.identity(indices, name="output_indices")
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[[input_dims]],
       output_names=["output_values", "output_indices"],
       expected_output_dims=[[[100, k], [100, k]]])
예제 #44
0
  def testTopKInfinities(self):
    """Tests that positive and negative infinity sort correctly."""
    # Only bfloat16 is implemented.
    bfloat16 = dtypes.bfloat16.as_numpy_dtype
    if bfloat16 not in self.numeric_types:
      return

    with self.cached_session() as sess:
      p = array_ops.placeholder(dtypes.bfloat16)
      with self.test_scope():
        topk = nn_ops.top_k(p, k=6)
      results = sess.run(topk, {
          p: np.array(
              [1, 2, float("inf"), -float("inf"), -1, -2], dtype=bfloat16)
      })
      self.assertAllEqual(
          np.array(
              [float("inf"), 2.0, 1.0, -1.0, -2.0, -float("inf")],
              dtype=bfloat16), results[0])
      self.assertEqual(list([2, 1, 0, 4, 5, 3]), list(results[1]))
예제 #45
0
  def testTopKZeros(self):
    """Tests that positive and negative zeros sort correctly."""
    # TODO(b/26783907): The Sort HLO is not implemented on CPU or GPU.
    if self.device in ["XLA_CPU", "XLA_GPU"]:
      return

    # Only bfloat16 is implemented.
    bfloat16 = dtypes.bfloat16.as_numpy_dtype
    if bfloat16 not in self.numeric_types:
      return

    with self.test_session() as sess:
      p = array_ops.placeholder(dtypes.bfloat16)
      with self.test_scope():
        topk = nn_ops.top_k(p, k=4)
      results = sess.run(
          topk,
          {p: np.array([0., -0., 0., 3., -0., -4., 0., -0.], dtype=bfloat16)})
      self.assertAllEqual(
          np.array([3., 0., 0., 0.], dtype=bfloat16), results[0])
      self.assertEqual(list([3, 0, 1, 2]), list(results[1]))
예제 #46
0
 def GetParams(self):
   """Testing that output type of engine using Top-K is set correctly."""
   dtype = dtypes.float32
   input_name = "input"
   input_dims = [100, 100]
   k = 5
   g = ops.Graph()
   with g.as_default():
     x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
     k_tensor = constant_op.constant(k, dtype=dtypes.int32, name="Const")
     values, indices = nn_ops.top_k(x, k_tensor, name="TopK")
     # Reshape will act as a layer between the TopK output and the engine
     # output, requiring the output tensor of reshape to be set explicitly to
     # int32.
     indices = array_ops.reshape(indices, [100, 1, 5], name="Reshape")
     values = array_ops.identity(values, name="output_values")
     indices = array_ops.identity(indices, name="output_indices")
   return trt_test.TfTrtIntegrationTestParams(
       gdef=g.as_graph_def(),
       input_names=[input_name],
       input_dims=[[input_dims]],
       output_names=["output_values", "output_indices"],
       expected_output_dims=[[[100, k], [100, 1, k]]])
예제 #47
0
 def benchmarkTopK(self):
   for (m, n, p, use_gpu) in itertools.product(
       [128],
       [10, 100, 1000, 10000, 100000],
       [0.001, 0.01, 0.5, 0.99, 1.0],
       [False, True]):
     k = int(p * n)
     if k == 0:
       continue
     name = "m_%d_n_%d_k_%g_use_gpu_%s" % (m, n, k, use_gpu)
     device = "/%s:0" % ("gpu" if use_gpu else "cpu")
     with ops.Graph().as_default():
       with ops.device(device):
         x = random_ops.random_uniform((m, n))
         v = resource_variable_ops.ResourceVariable(x)
         op = nn_ops.top_k(v, k)
       with session.Session() as sess:
         v.initializer.run()
         r = self.run_op_benchmark(sess, op, min_iters=100, name=name)
         gb_processed_input = m * n / 1.0e9
         throughput = gb_processed_input / r["wall_time"]
         print("Benchmark: %s \t wall_time: %0.03g s \t "
               "Throughput: %0.03g GB/s" % (name, r["wall_time"], throughput))
         sys.stdout.flush()
예제 #48
0
def sample_symbols_new(logits, log_probs, finished, lengths, time):
    """
    :param logits: [batch_size * beam_size, target_vocab_size]
    :param log_probs: [batch_size * beam_size, ]
    :param finished: [batch_size * beam_size, ]
    :param lengths: decoding length [batch_size * beam_size, ]
    :param time:
    :return:
    """

    # [batch_size * beam_size,]
    prev_finished_float = math_ops.to_float(finished)
    # [batch_size * beam_size, ]
    prev_log_probs = log_probs
    # [batch_size * beam_size, target_vocab_size]
    probs = advanced_log_softmax(logits)  # negative

    # mask the finished beam except only one entrance (target_eos_id)
    #   [target_vocab_size, ]: [float_min, float_min, float_min, ..., 0]
    #   this forces the beam with EOS continue to generate EOS
    finished_beam_bias = finished_beam_one_entry_bias(
        on_entry=eos_id, num_entries=vocab_size)
    # [batch_size * beam_size, target_vocab_size]: outer product
    finished_beam_bias = expand_to_beam_size(
        finished_beam_bias, beam_size * batch_size, axis=0)
    finished_beam_bias *= array_ops.expand_dims(prev_finished_float, 1)
    # compute new probs, with finished flags & mask
    probs = probs * array_ops.expand_dims(1. - prev_finished_float, 1) + finished_beam_bias

    # [batch_size * beam_size, target_vocab_size]
    # compute new log_probs
    log_probs = probs + array_ops.expand_dims(prev_log_probs, 1)
    # new decoding length: [batch_size * beam_size]
    lengths = lengths + 1 - math_ops.to_int32(finished)
    # compute beam score
    #  length_penalty: [batch_size * beam_size,]
    length_penalty = math_ops.pow(
        ((5.0 + math_ops.to_float(lengths)) / 6.0), -alpha)
    scores = log_probs * array_ops.expand_dims(length_penalty, axis=1)

    # flatten
    # [batch_size, beam_size * target_vocab_size]
    scores = array_ops.reshape(array_ops.reshape(scores, [-1]),
                               [batch_size, -1])
    ret_log_probs = array_ops.reshape(array_ops.reshape(log_probs, [-1]),
                                      [batch_size, -1])

    scores_flat = control_flow_ops.cond(
        ops.convert_to_tensor(time) > 0, lambda: scores,  # time > 0: all
        lambda: array_ops.slice(scores, [0, 0],
                                [-1, vocab_size]))  # time = 0: first logits in each batch

    # [batch_size, beam_size] will restore top live_k
    sample_scores, sample_ids = nn_ops.top_k(scores_flat, k=beam_size)
    ret_sample_ids = array_ops.reshape(sample_ids, [-1])
    # flatten: [batch_size * beam_size,]
    sample_ids = array_ops.reshape(sample_ids, [-1])
    # because we do topk to scores with dim:[batch, beam * vocab]
    #   we need to cover the true word ids
    word_ids = math_ops.mod(sample_ids, vocab_size)

    # beam ids should be adjusted according to batch_size
    #  batch_pos, [batch_size, beam_size]: [[0, 0, ...], [1, 1,...], [batch_size,...] ]
    batch_pos = compute_batch_indices(batch_size, beam_size)

    # compute new beam_ids, [batch_size * beam_size, ]
    beam_ids = math_ops.div(sample_ids, vocab_size) \
               + array_ops.reshape(batch_pos * beam_size, [-1])

    # we need to recover log_probs from score
    # flatten sample_scores: [batch_size * beam_size,]
    sample_scores_flatten = array_ops.reshape(sample_scores, [-1])
    # gather each length penalty
    length_penalty = gather_states(length_penalty, beam_ids)
    # recover log probabilities
    next_log_probs = sample_scores_flatten / length_penalty
    # gather states according to beam_ids
    next_lengths = gather_states(lengths, beam_ids)

    # [batch_size * beam_size * vocab_size, ]
    log_probs_flat = array_ops.reshape(log_probs, [-1])
    log_probs_index = array_ops.reshape(batch_pos, [-1]) * beam_size * vocab_size + sample_ids
    next_log_probs = array_ops.gather(log_probs_flat, log_probs_index)

    return word_ids, beam_ids, next_log_probs, next_lengths, ret_log_probs, ret_sample_ids, length_penalty
예제 #49
0
def _descending_sort(values, axis, return_argsort=False):
  """Sorts values in reverse using `top_k`.

  Args:
    values: Tensor of numeric values.
    axis: Index of the axis which values should be sorted along.
    return_argsort: If False, return the sorted values. If True, return the
      indices that would sort the values.

  Returns:
    The sorted values.
  """
  k = array_ops.shape(values)[axis]
  rank = array_ops.rank(values)
  static_rank = values.shape.ndims
  # Fast path: sorting the last axis.
  if axis == -1 or axis + 1 == values.get_shape().ndims:
    top_k_input = values
    transposition = None
  else:
    # Otherwise, transpose the array. Swap axes `axis` and `rank - 1`.
    if axis < 0:
      # Calculate the actual axis index if counting from the end. Use the static
      # rank if available, or else make the axis back into a tensor.
      axis += static_rank or rank
    if static_rank is not None:
      # Prefer to calculate the transposition array in NumPy and make it a
      # constant.
      transposition = constant_op.constant(
          np.r_[
              # Axes up to axis are unchanged.
              np.arange(axis),
              # Swap axis and rank - 1.
              [static_rank - 1],
              # Axes in [axis + 1, rank - 1) are unchanged.
              np.arange(axis + 1, static_rank - 1),
              # Swap axis and rank - 1.
              [axis]],
          name='transposition')
    else:
      # Generate the transposition array from the tensors.
      transposition = array_ops.concat(
          [
              # Axes up to axis are unchanged.
              math_ops.range(axis),
              # Swap axis and rank - 1.
              [rank - 1],
              # Axes in [axis + 1, rank - 1) are unchanged.
              math_ops.range(axis + 1, rank - 1),
              # Swap axis and rank - 1.
              [axis]
          ],
          axis=0)
    top_k_input = array_ops.transpose(values, transposition)

  values, indices = nn_ops.top_k(top_k_input, k)
  return_value = indices if return_argsort else values
  if transposition is not None:
    # transposition contains a single cycle of length 2 (swapping 2 elements),
    # so it is an involution (it is its own inverse).
    return_value = array_ops.transpose(return_value, transposition)
  return return_value
예제 #50
0
 def topk(v, k=k):
   return nn_ops.top_k(v, k=k, sorted=True)
예제 #51
0
def _beam_search_step(time, logits, beam_state, batch_size, beam_width,
                      end_token, length_penalty_weight):
  """Performs a single step of Beam Search Decoding.

  Args:
    time: Beam search time step, should start at 0. At time 0 we assume
      that all beams are equal and consider only the first beam for
      continuations.
    logits: Logits at the current time step. A tensor of shape `[B, vocab_size]`
    beam_state: Current state of the beam search. An instance of `BeamState`
    batch_size: The batch size for this input.
    beam_width: The size of the beams.
    end_token: The int32 end token.
    length_penalty_weight: Float weight to penalize length. Disabled with 0.0.

  Returns:
    A new beam state.
  """
  static_batch_size = tensor_util.constant_value(batch_size)

  # Calculate the current lengths of the predictions
  prediction_lengths = beam_state.lengths
  previously_finished = beam_state.finished

  # Calculate the total log probs for the new hypotheses
  # Final Shape: [batch_size, beam_width, vocab_size]
  probs = nn_ops.log_softmax(logits)
  probs = _mask_probs(probs, end_token, previously_finished)
  total_probs = array_ops.expand_dims(beam_state.log_probs, 2) + probs

  # Calculate the continuation lengths by adding to all continuing beams.
  vocab_size = logits.get_shape().as_list()[-1]
  lengths_to_add = array_ops.one_hot(
      array_ops.tile(
          array_ops.reshape(end_token, [1, 1]), [batch_size, beam_width]),
      vocab_size, 0, 1)
  add_mask = (1 - math_ops.to_int32(previously_finished))
  lengths_to_add = array_ops.expand_dims(add_mask, 2) * lengths_to_add
  new_prediction_lengths = array_ops.expand_dims(prediction_lengths,
                                                 2) + lengths_to_add

  # Calculate the scores for each beam
  scores = _get_scores(
      log_probs=total_probs,
      sequence_lengths=new_prediction_lengths,
      length_penalty_weight=length_penalty_weight)

  scores_flat = array_ops.reshape(scores, [batch_size, -1])
  # During the first time step we only consider the initial beam
  scores_flat = control_flow_ops.cond(
      ops.convert_to_tensor(time) > 0, lambda: scores_flat,
      lambda: scores[:, 0])

  # Pick the next beams according to the specified successors function
  next_beam_scores, word_indices = nn_ops.top_k(scores_flat, k=beam_width)
  next_beam_scores.set_shape([static_batch_size, beam_width])
  word_indices.set_shape([static_batch_size, beam_width])

  # Pick out the probs, beam_ids, and states according to the chosen predictions
  next_beam_probs = _tensor_gather_helper(
      gather_indices=word_indices,
      gather_from=total_probs,
      range_input=batch_size,
      range_size=beam_width * vocab_size,
      final_shape=[static_batch_size, beam_width])

  next_word_ids = math_ops.to_int32(word_indices % vocab_size)
  next_beam_ids = math_ops.to_int32(word_indices / vocab_size)

  # Append new ids to current predictions
  previously_finished = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=previously_finished,
      range_input=batch_size,
      range_size=beam_width,
      final_shape=[static_batch_size, beam_width])
  next_finished = math_ops.logical_or(previously_finished,
                                      math_ops.equal(next_word_ids, end_token))

  # Calculate the length of the next predictions.
  # 1. Finished beams remain unchanged
  # 2. Beams that are now finished (EOS predicted) remain unchanged
  # 3. Beams that are not yet finished have their length increased by 1
  lengths_to_add = math_ops.to_int32(
      math_ops.not_equal(next_word_ids, end_token))
  lengths_to_add = (1 - math_ops.to_int32(next_finished)) * lengths_to_add
  next_prediction_len = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=beam_state.lengths,
      range_input=batch_size,
      range_size=beam_width,
      final_shape=[static_batch_size, beam_width])
  next_prediction_len += lengths_to_add

  next_state = BeamSearchDecoderState(
      cell_state=beam_state.cell_state,
      log_probs=next_beam_probs,
      lengths=next_prediction_len,
      finished=next_finished)

  output = BeamSearchDecoderOutput(
      scores=next_beam_scores,
      predicted_ids=next_word_ids,
      parent_ids=next_beam_ids)

  return output, next_state
def _beam_search_step(time, logits, next_cell_state, beam_state, batch_size,
                      beam_width, end_token, length_penalty_weight):
    """Performs a single step of Beam Search Decoding.
    Args:
      time: Beam search time step, should start at 0. At time 0 we assume
        that all beams are equal and consider only the first beam for
        continuations.
      logits: Logits at the current time step. A tensor of shape
        `[batch_size, beam_width, vocab_size]`
      next_cell_state: The next state from the cell, e.g. an instance of
        AttentionWrapperState if the cell is attentional.
      beam_state: Current state of the beam search.
        An instance of `BeamSearchDecoderState`.
      batch_size: The batch size for this input.
      beam_width: Python int.  The size of the beams.
      end_token: The int32 end token.
      length_penalty_weight: Float weight to penalize length. Disabled with 0.0.
    Returns:
      A new beam state.
    """
    static_batch_size = tensor_util.constant_value(batch_size)

    # Calculate the current lengths of the predictions
    prediction_lengths = beam_state.lengths
    previously_finished = beam_state.finished

    # Calculate the total log probs for the new hypotheses
    # Final Shape: [batch_size, beam_width, vocab_size]
    step_log_probs = nn_ops.log_softmax(logits)
    step_log_probs = _mask_probs(
        step_log_probs, end_token, previously_finished)
    total_probs = tf.expand_dims(
        beam_state.log_probs, axis=2) + step_log_probs

    # Calculate the continuation lengths by adding to all continuing beams.
    vocab_size = logits.shape[-1].value
    lengths_to_add = tf.one_hot(
        indices=tf.tile(
            tf.reshape(end_token, [1, 1]), [batch_size, beam_width]),
        depth=vocab_size,
        on_value=0,
        off_value=1)
    add_mask = (1 - tf.to_int32(previously_finished))
    lengths_to_add = tf.expand_dims(add_mask, 2) * lengths_to_add
    new_prediction_lengths = (
        lengths_to_add + tf.expand_dims(prediction_lengths, 2))

    # Calculate the scores for each beam
    scores = _get_scores(
        log_probs=total_probs,
        sequence_lengths=new_prediction_lengths,
        length_penalty_weight=length_penalty_weight)

    time = ops.convert_to_tensor(time, name="time")
    # During the first time step we only consider the initial beam
    scores_shape = tf.shape(scores)
    scores_flat = tf.cond(
        time > 0,
        lambda: tf.reshape(scores, [batch_size, -1]),
        lambda: scores[:, 0])
    num_available_beam = tf.cond(
        time > 0, lambda: tf.reduce_prod(scores_shape[1:]),
        lambda: tf.reduce_prod(scores_shape[2:]))

    # Pick the next beams according to the specified successors function
    next_beam_size = tf.minimum(
        ops.convert_to_tensor(
            beam_width, dtype=dtypes.int32, name="beam_width"),
        num_available_beam)
    next_beam_scores, word_indices = nn_ops.top_k(
        scores_flat, k=next_beam_size)
    next_beam_scores.set_shape([static_batch_size, beam_width])
    word_indices.set_shape([static_batch_size, beam_width])

    # Pick out the probs, beam_ids, and states according to the chosen
    # predictions
    next_beam_probs = _tensor_gather_helper(
        gather_indices=word_indices,
        gather_from=total_probs,
        batch_size=batch_size,
        range_size=beam_width * vocab_size,
        gather_shape=[-1])
    next_word_ids = tf.to_int32(word_indices % vocab_size)
    next_beam_ids = tf.to_int32(word_indices / vocab_size)

    # Append new ids to current predictions
    previously_finished = _tensor_gather_helper(
        gather_indices=next_beam_ids,
        gather_from=previously_finished,
        batch_size=batch_size,
        range_size=beam_width,
        gather_shape=[-1])
    next_finished = tf.logical_or(previously_finished,
                                  tf.equal(next_word_ids, end_token))

    # Calculate the length of the next predictions.
    # 1. Finished beams remain unchanged
    # 2. Beams that are now finished (EOS predicted) remain unchanged
    # 3. Beams that are not yet finished have their length increased by 1
    lengths_to_add = tf.to_int32(
        tf.not_equal(next_word_ids, end_token))
    lengths_to_add = (1 - tf.to_int32(next_finished)) * lengths_to_add
    next_prediction_len = _tensor_gather_helper(
        gather_indices=next_beam_ids,
        gather_from=beam_state.lengths,
        batch_size=batch_size,
        range_size=beam_width,
        gather_shape=[-1])
    next_prediction_len += lengths_to_add

    # Pick out the cell_states according to the next_beam_ids. We use a
    # different gather_shape here because the cell_state tensors, i.e.
    # the tensors that would be gathered from, all have dimension
    # greater than two and we need to preserve those dimensions.
    next_cell_state = nest.map_structure(
        lambda gather_from: _maybe_tensor_gather_helper(
            gather_indices=next_beam_ids,
            gather_from=gather_from,
            batch_size=batch_size,
            range_size=beam_width,
            gather_shape=[batch_size * beam_width, -1]),
        next_cell_state)

    next_state = BeamSearchDecoderState(
        cell_state=next_cell_state,
        log_probs=next_beam_probs,
        lengths=next_prediction_len,
        finished=next_finished)

    output = BeamSearchDecoderOutput(
        scores=next_beam_scores,
        predicted_ids=next_word_ids,
        parent_ids=next_beam_ids)

    return output, next_state
예제 #53
0
 def testKTooLarge(self):
   inputs = [[0.1, 0.2], [0.3, 0.4]]
   with self.assertRaisesRegexp(ValueError,
                                r"must have last dimension >= k = 4"):
     nn_ops.top_k(inputs, 4)
예제 #54
0
def tftop_k(_):
  x = array_ops.placeholder(dtypes.int32, shape=[5], name='x')
  output = nn_ops.top_k(x, 2, name='values')
  array_ops.identity(output[1], name='indices')
예제 #55
0
def _sort_tensor(tensor):
  """Use `top_k` to sort a `Tensor` along the last dimension."""
  sorted_, _ = nn_ops.top_k(tensor, k=array_ops.shape(tensor)[-1])
  return sorted_
예제 #56
0
def _beam_search_step(time, logits, next_cell_state, beam_state, batch_size,
                      beam_width, end_token, length_penalty_weight):
  """Performs a single step of Beam Search Decoding.

  Args:
    time: Beam search time step, should start at 0. At time 0 we assume
      that all beams are equal and consider only the first beam for
      continuations.
    logits: Logits at the current time step. A tensor of shape
      `[batch_size, beam_width, vocab_size]`
    next_cell_state: The next state from the cell, e.g. an instance of
      AttentionWrapperState if the cell is attentional.
    beam_state: Current state of the beam search.
      An instance of `BeamSearchDecoderState`.
    batch_size: The batch size for this input.
    beam_width: Python int.  The size of the beams.
    end_token: The int32 end token.
    length_penalty_weight: Float weight to penalize length. Disabled with 0.0.

  Returns:
    A new beam state.
  """
  static_batch_size = tensor_util.constant_value(batch_size)

  # Calculate the current lengths of the predictions
  prediction_lengths = beam_state.lengths
  previously_finished = beam_state.finished

  # Calculate the total log probs for the new hypotheses
  # Final Shape: [batch_size, beam_width, vocab_size]
  step_log_probs = nn_ops.log_softmax(logits)
  step_log_probs = _mask_probs(step_log_probs, end_token, previously_finished)
  total_probs = array_ops.expand_dims(beam_state.log_probs, 2) + step_log_probs

  # Calculate the continuation lengths by adding to all continuing beams.
  vocab_size = logits.shape[-1].value or array_ops.shape(logits)[-1]
  lengths_to_add = array_ops.one_hot(
      indices=array_ops.fill([batch_size, beam_width], end_token),
      depth=vocab_size,
      on_value=np.int64(0),
      off_value=np.int64(1),
      dtype=dtypes.int64)
  add_mask = math_ops.to_int64(math_ops.logical_not(previously_finished))
  lengths_to_add *= array_ops.expand_dims(add_mask, 2)
  new_prediction_lengths = (
      lengths_to_add + array_ops.expand_dims(prediction_lengths, 2))

  # Calculate the scores for each beam
  scores = _get_scores(
      log_probs=total_probs,
      sequence_lengths=new_prediction_lengths,
      length_penalty_weight=length_penalty_weight)

  time = ops.convert_to_tensor(time, name="time")
  # During the first time step we only consider the initial beam
  scores_flat = array_ops.reshape(scores, [batch_size, -1])

  # Pick the next beams according to the specified successors function
  next_beam_size = ops.convert_to_tensor(
      beam_width, dtype=dtypes.int32, name="beam_width")
  next_beam_scores, word_indices = nn_ops.top_k(scores_flat, k=next_beam_size)

  next_beam_scores.set_shape([static_batch_size, beam_width])
  word_indices.set_shape([static_batch_size, beam_width])

  # Pick out the probs, beam_ids, and states according to the chosen predictions
  next_beam_probs = _tensor_gather_helper(
      gather_indices=word_indices,
      gather_from=total_probs,
      batch_size=batch_size,
      range_size=beam_width * vocab_size,
      gather_shape=[-1],
      name="next_beam_probs")
  # Note: just doing the following
  #   math_ops.to_int32(word_indices % vocab_size,
  #       name="next_beam_word_ids")
  # would be a lot cleaner but for reasons unclear, that hides the results of
  # the op which prevents capturing it with tfdbg debug ops.
  raw_next_word_ids = math_ops.mod(
      word_indices, vocab_size, name="next_beam_word_ids")
  next_word_ids = math_ops.to_int32(raw_next_word_ids)
  next_beam_ids = math_ops.to_int32(
      word_indices / vocab_size, name="next_beam_parent_ids")

  # Append new ids to current predictions
  previously_finished = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=previously_finished,
      batch_size=batch_size,
      range_size=beam_width,
      gather_shape=[-1])
  next_finished = math_ops.logical_or(
      previously_finished,
      math_ops.equal(next_word_ids, end_token),
      name="next_beam_finished")

  # Calculate the length of the next predictions.
  # 1. Finished beams remain unchanged.
  # 2. Beams that are now finished (EOS predicted) have their length
  #    increased by 1.
  # 3. Beams that are not yet finished have their length increased by 1.
  lengths_to_add = math_ops.to_int64(math_ops.logical_not(previously_finished))
  next_prediction_len = _tensor_gather_helper(
      gather_indices=next_beam_ids,
      gather_from=beam_state.lengths,
      batch_size=batch_size,
      range_size=beam_width,
      gather_shape=[-1])
  next_prediction_len += lengths_to_add

  # Pick out the cell_states according to the next_beam_ids. We use a
  # different gather_shape here because the cell_state tensors, i.e.
  # the tensors that would be gathered from, all have dimension
  # greater than two and we need to preserve those dimensions.
  # pylint: disable=g-long-lambda
  next_cell_state = nest.map_structure(
      lambda gather_from: _maybe_tensor_gather_helper(
          gather_indices=next_beam_ids,
          gather_from=gather_from,
          batch_size=batch_size,
          range_size=beam_width,
          gather_shape=[batch_size * beam_width, -1]),
      next_cell_state)
  # pylint: enable=g-long-lambda

  next_state = BeamSearchDecoderState(
      cell_state=next_cell_state,
      log_probs=next_beam_probs,
      lengths=next_prediction_len,
      finished=next_finished)

  output = BeamSearchDecoderOutput(
      scores=next_beam_scores,
      predicted_ids=next_word_ids,
      parent_ids=next_beam_ids)

  return output, next_state