예제 #1
0
    def benchmark_einsum(self):
        for equation, dim in self.cases:
            with ops.Graph().as_default(), \
                session.Session(config=benchmark.benchmark_config()) as sess, \
                ops.device('/cpu:0'):
                r = np.random.RandomState(0)
                input_subscripts = equation.split('->')[0].split(',')
                input_vars = []
                for subscript in input_subscripts:
                    input_shape = (dim, ) * len(subscript)
                    input_vars.append(
                        variables.Variable(
                            np.array(r.randn(*input_shape), np.float32)))
                variables.global_variables_initializer().run()

                if len(input_vars) <= 2:
                    self.run_op_benchmark(
                        sess,
                        special_math_ops.einsum(equation, *input_vars),
                        min_iters=50,
                        name='einsum_cpu_({})_{}'.format(equation, dim))
                else:
                    for optimize in ['greedy', 'auto']:
                        self.run_op_benchmark(
                            sess,
                            special_math_ops.einsum(equation,
                                                    *input_vars,
                                                    optimize=optimize),
                            min_iters=50,
                            name='einsum_cpu_({})_{}_{}'.format(
                                equation, optimize, dim))
예제 #2
0
 def call(self, inputs, states):
   prev_output = states[0]
   h = special_math_ops.einsum('bij,ijkl->bkl', inputs, self.kernel)
   h += array_ops.expand_dims(self.bias, axis=0)
   output = h + special_math_ops.einsum('bij,ijkl->bkl', prev_output,
                                        self.recurring_kernel)
   return output, [output]
    def call(self, inputs, attention_mask=None, return_attention_scores=False, training=None):
        if not self._built_from_signature:
            self._build_from_signature(featuremap=inputs)
        #   N = `num_attention_heads`
        #   H = `size_per_head`
        # `query` = [B, T, N ,H]
        query = self._query_dense(inputs)

        # `key` = [B, S, N, H]
        key = self._key_dense(inputs)

        # `value` = [B, S, N, H]
        value = self._value_dense(inputs)

        query = math_ops.multiply(query, 1.0 / math.sqrt(float(self._key_dim)))
        attention_scores = special_math_ops.einsum(self._dot_product_equation, key, query)
        if self.relative:
            attention_scores += self.relative_logits(query)
        attention_scores = self._masked_softmax(attention_scores, attention_mask)
        attention_scores_dropout = self._dropout_layer(attention_scores, training=training)
        attention_output = special_math_ops.einsum(self._combine_equation, attention_scores_dropout, value)

        # attention_output = self._output_dense(attention_output)
        hh, ww = inputs.shape[1], inputs.shape[2]
        attention_output = tf.reshape(attention_output, [-1, hh, ww, self.num_heads * self.key_dim])

        if return_attention_scores:
            return attention_output, attention_scores
        return attention_output
예제 #4
0
    def test_input_is_placeholder(self):
        with ops.Graph().as_default():
            m0 = array_ops.placeholder(dtypes.int32, shape=(1, None))
            m1 = array_ops.placeholder(dtypes.int32, shape=(None, 1))
            out = special_math_ops.einsum('ij,jk->ik', m0, m1)
            with session.Session() as sess:
                feed_dict = {
                    m0: [[1, 2, 3]],
                    m1: [[2], [1], [1]],
                }
                np.testing.assert_almost_equal([[7]],
                                               sess.run(out,
                                                        feed_dict=feed_dict))

        with ops.Graph().as_default():
            m0 = array_ops.placeholder(dtypes.int32, shape=(None, 3))
            m1 = array_ops.placeholder(dtypes.int32, shape=(3, ))
            out = special_math_ops.einsum('ij,j->i', m0, m1)
            with session.Session() as sess:
                feed_dict = {
                    m0: [[1, 2, 3]],
                    m1: [2, 1, 1],
                }
                np.testing.assert_almost_equal([7],
                                               sess.run(out,
                                                        feed_dict=feed_dict))
예제 #5
0
  def test_invalid_equation(self):
    r = np.random.RandomState(0)
    cases = [
        # invalid equation format.
        ('a0->a', r.randn(5, 3)),
        ('a->a,a', r.randn(5)),
        ('a->a->a', r.randn(5)),
        ('ijk ijk', r.randn(1, 2, 3), r.randn(1, 2, 3)),
        ('ij.jk->ik', r.randn(2, 3), r.randn(3, 4)),
        # output label not present in input.
        ('a->b', r.randn(5)),
        ('ij,jk->im', r.randn(2, 3), r.randn(3, 4)),
        # wrong shape.
        ('ij,jk->ik', r.randn(1, 2, 3), r.randn(3, 4)),
        # inconsistent dimensions.
        ('ij,jk->ik', r.randn(2, 3), r.randn(4, 4)),
        # output has repeated subscripts.
        ('ij,jk->iik', r.randn(2, 3), r.randn(3, 4)),
        # too many ellipses
        ('...ij...,jk...->ik...', r.randn(2, 3), r.randn(3, 4)),
        ('...ij,jk...->...ik...', r.randn(2, 3), r.randn(3, 4)),
        # invalid broadcast dimensions.
        ('...ij,...jk->...ik', r.randn(5, 2, 3), r.randn(7, 3, 4)),
        # output should have ellipsis when broadcasting shape is non-empty.
        ('...ij,...jk->ik', r.randn(2, 2, 3), r.randn(3, 4)),
    ]
    for args in cases:
      with self.assertRaises((ValueError, errors.InvalidArgumentError)):
        _ = special_math_ops.einsum(*args)

      placeholders = [
          array_ops.placeholder_with_default(x, shape=None) for x in args[1:]
      ]
      with self.assertRaises((ValueError, errors.InvalidArgumentError)):
        _ = self.evaluate(special_math_ops.einsum(args[0], *placeholders))
예제 #6
0
 def call(self, inputs, states):
     prev_output = states[0]
     h = special_math_ops.einsum('bij,ijkl->bkl', inputs, self.kernel)
     h += array_ops.expand_dims(self.bias, axis=0)
     output = h + special_math_ops.einsum('bij,ijkl->bkl', prev_output,
                                          self.recurring_kernel)
     return output, [output]
  def test_input_is_placeholder(self):
    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(1, None))
      m1 = array_ops.placeholder(dtypes.int32, shape=(None, 1))
      out = special_math_ops.einsum('ij,jk->ik', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[1, 2, 3]],
            m1: [[2], [1], [1]],
        }
        np.testing.assert_almost_equal(
            [[7]], sess.run(out, feed_dict=feed_dict))

    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(None, 3))
      m1 = array_ops.placeholder(dtypes.int32, shape=(3,))
      out = special_math_ops.einsum('ij,j->i', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[1, 2, 3]],
            m1: [2, 1, 1],
        }
        np.testing.assert_almost_equal([7], sess.run(out, feed_dict=feed_dict))

    # Tests for placeholders which have two or more None values
    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(None, None, 2))
      m1 = array_ops.placeholder(dtypes.int32, shape=(2, 1))
      out = special_math_ops.einsum('ijk,kl->ijl', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[[1,2]]],
            m1: [[3], [2]],
        }
        np.testing.assert_almost_equal(
            [[[7]]], sess.run(out, feed_dict=feed_dict))

    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(2, 1))
      m1 = array_ops.placeholder(dtypes.int32, shape=(None, None, 2))
      out = special_math_ops.einsum('kl,ijk->ijl', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[3], [2]],
            m1: [[[1,2]]],
        }
        np.testing.assert_almost_equal(
            [[[7]]], sess.run(out, feed_dict=feed_dict))

    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(None, None, 2))
      m1 = array_ops.placeholder(dtypes.int32, shape=(2,))
      out = special_math_ops.einsum('ijk,k->ij', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[[1, 2]]],
            m1: [3, 2],
        }
        np.testing.assert_almost_equal(
            [[7]], sess.run(out, feed_dict=feed_dict))
예제 #8
0
파일: utils.py 프로젝트: shwang/NNG
def eigen_basis_kron_product_3d(left, right, vec, transpose=False):
    if transpose:
        left_t = array_ops.transpose(left)
        right_matmul = special_math_ops.einsum("bij,jk->bik", vec, right)
        result = special_math_ops.einsum("ik,bkz->biz", left_t, right_matmul)
        return result

    else:
        raise NotImplementedError()
예제 #9
0
 def _compute_attention(self, query, key, value, attention_mask=None):
     # query = tf.math.multiply(query, self._query_scale)
     attn_scores = special_math_ops.einsum(self._dot_product_equation, key,
                                           query)
     attn_scores = self._masked_softmax(
         attn_scores, attention_mask
     )  # TODO can I replace softmax here with somthing more log likelihood related? (ie continuous attn)
     attn_output = special_math_ops.einsum(self._combine_equation,
                                           attn_scores, value)
     return attn_output, attn_scores
예제 #10
0
 def loop_fn(i):
   x = array_ops.gather(x_series, 0)  # invariant.
   y = array_ops.gather(y_series, 0)  # invariant.
   x_i = array_ops.gather(x_series, i)
   y_i = array_ops.gather(y_series, i)
   z1 = special_math_ops.einsum("ab,bc->ac", x_i, y)
   z2 = special_math_ops.einsum("ab,bc->ac", x, y_i)
   z3 = special_math_ops.einsum("ab,bc->ac", x, y)
   z4 = special_math_ops.einsum("ab,bc->ac", x_i, y_i)
   z5 = special_math_ops.einsum("cd,ce->de", y_i, x_i)  # Includes transpose.
   outputs = [z1, z2, z3, z4, z5]
   return outputs
예제 #11
0
  def testUnary(self):
    for dtype in self.float_types:
      self._testUnary(
          lambda x: special_math_ops.einsum('ijk->kji', x),
          np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
          expected=np.array([[[1], [2], [6]], [[3], [5], [8]]], dtype=dtype))

      with compat.forward_compatibility_horizon(2019, 10, 19):
        self._testUnary(
            lambda x: special_math_ops.einsum('ijk->kji', x),
            np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
            expected=np.array([[[1], [2], [6]], [[3], [5], [8]]], dtype=dtype))
예제 #12
0
  def testMatMul(self):
    for dtype in self.float_types:
      self._testBinary(
          lambda x, y: special_math_ops.einsum('ij,jk->ik', x, y),
          np.array([[-0.25]], dtype=dtype),
          np.array([[8]], dtype=dtype),
          expected=np.array([[-2]], dtype=dtype))

      with compat.forward_compatibility_horizon(2019, 10, 19):
        self._testBinary(
            lambda x, y: special_math_ops.einsum('ij,jk->ik', x, y),
            np.array([[-0.25]], dtype=dtype),
            np.array([[8]], dtype=dtype),
            expected=np.array([[-2]], dtype=dtype))
예제 #13
0
  def testReducedIndices(self):
    for dtype in self.float_types:
      self._testBinary(
          lambda x, y: special_math_ops.einsum('ij,j->', x, y),
          np.array([[1, 3], [2, 5], [6, 8]], dtype=dtype),
          np.array([3, 2], dtype=dtype),
          expected=np.array(59, dtype=dtype))

      with compat.forward_compatibility_horizon(2019, 10, 19):
        self._testBinary(
            lambda x, y: special_math_ops.einsum('ij,j->', x, y),
            np.array([[1, 3], [2, 5], [6, 8]], dtype=dtype),
            np.array([3, 2], dtype=dtype),
            expected=np.array(59, dtype=dtype))
예제 #14
0
  def testImplicitForm(self):
    for dtype in self.float_types:
      self._testBinary(
          lambda x, y: special_math_ops.einsum('ijk,kji', x, y),
          np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
          np.array([[[1], [3], [2]], [[5], [6], [8]]], dtype=dtype),
          expected=np.array(128, dtype=dtype))

      with compat.forward_compatibility_horizon(2019, 10, 19):
        self._testBinary(
            lambda x, y: special_math_ops.einsum('ijk,kji', x, y),
            np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
            np.array([[[1], [3], [2]], [[5], [6], [8]]], dtype=dtype),
            expected=np.array(128, dtype=dtype))
예제 #15
0
    def _compute_attention(self, query, key, value, attention_mask=None):
        """Applies Dot-product attention with query, key, value tensors.

    This function defines the computation inside `call` with projected
    multi-head Q, K, V inputs. Users can override this function for customized
    attention implementation.

    Args:
      query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
      key: Projected key `Tensor` of shape `[B, T, N, key_dim]`.
      value: Projected value `Tensor` of shape `[B, T, N, value_dim]`.
      attention_mask: a boolean mask of shape `[B, T, S]`, that prevents
        attention to certain positions.

    Returns:
      attention_output: Multi-headed outputs of attention computation.
      attention_scores: Multi-headed attention weights.
    """
        # Note: Applying scalar multiply at the smaller end of einsum improves
        # XLA performance, but may introduce slight numeric differences in
        # the Transformer attention head.
        query = math_ops.multiply(query, 1.0 / math.sqrt(float(self._key_dim)))

        # Take the dot product between "query" and "key" to get the raw
        # attention scores.
        attention_scores = special_math_ops.einsum(self._dot_product_equation,
                                                   key, query)

        # Normalize the attention scores to probabilities.
        # `attention_scores` = [B, N, T, S]
        if attention_mask is not None:
            # The expand dim happens starting from the `num_heads` dimension,
            # (<batch_dims>, num_heads, <query_attention_dims, key_attention_dims>)
            mask_expansion_axes = [-len(self._attention_axes) * 2 - 1]
            for _ in range(
                    len(attention_scores.shape) - len(attention_mask.shape)):
                attention_mask = array_ops.expand_dims(
                    attention_mask, axis=mask_expansion_axes)
        attention_scores = self._masked_softmax(attention_scores,
                                                attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_scores_dropout = self._dropout_layer(attention_scores)

        # `context_layer` = [B, T, N, H]
        attention_output = special_math_ops.einsum(self._combine_equation,
                                                   attention_scores_dropout,
                                                   value)
        return attention_output, attention_scores
    def _compute_attention(self,
                           query,
                           key,
                           value,
                           attention_mask=None,
                           training=None):
        """Applies Dot-product attention with query, key, value tensors.

    This function defines the computation inside `call` with projected
    multi-head Q, K, V inputs. Users can override this function for customized
    attention implementation.

    Args:
      query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
      key: Projected key `Tensor` of shape `[B, T, N, key_dim]`.
      value: Projected value `Tensor` of shape `[B, T, N, value_dim]`.
      attention_mask: a boolean mask of shape `[B, T, S]`, that prevents
        attention to certain positions.
      training: Python boolean indicating whether the layer should behave in
        training mode (adding dropout) or in inference mode (doing nothing).

    Returns:
      attention_output: Multi-headed outputs of attention computation.
      attention_scores: Multi-headed attention weights.
    """
        # Note: Applying scalar multiply at the smaller end of einsum improves
        # XLA performance, but may introduce slight numeric differences in
        # the Transformer attention head.
        query = math_ops.multiply(query, 1.0 / math.sqrt(float(self._key_dim)))

        # Take the dot product between "query" and "key" to get the raw
        # attention scores.
        attention_scores = special_math_ops.einsum(self._dot_product_equation,
                                                   key, query)

        attention_scores = self._masked_softmax(attention_scores,
                                                attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_scores_dropout = self._dropout_layer(attention_scores,
                                                       training=training)

        # `context_layer` = [B, T, N, H]
        attention_output = special_math_ops.einsum(self._combine_equation,
                                                   attention_scores_dropout,
                                                   value)
        return attention_output, attention_scores
예제 #17
0
 def testUnary(self):
     for dtype in self.float_types:
         self._testUnary(lambda x: special_math_ops.einsum('ijk->kji', x),
                         np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
                         expected=np.array(
                             [[[1], [2], [6]], [[3], [5], [8]]],
                             dtype=dtype))
예제 #18
0
 def testReducedIndices(self):
     for dtype in self.float_types:
         self._testBinary(
             lambda x, y: special_math_ops.einsum('ij,j->', x, y),
             np.array([[1, 3], [2, 5], [6, 8]], dtype=dtype),
             np.array([3, 2], dtype=dtype),
             expected=np.array(59, dtype=dtype))
예제 #19
0
 def testMatMul(self):
     for dtype in self.float_types:
         self._testBinary(
             lambda x, y: special_math_ops.einsum('ij,jk->ik', x, y),
             np.array([[-0.25]], dtype=dtype),
             np.array([[8]], dtype=dtype),
             expected=np.array([[-2]], dtype=dtype))
예제 #20
0
def einsum(subscripts, *operands, **kwargs):  # pylint: disable=missing-docstring
  casting = kwargs.get('casting', 'safe')
  optimize = kwargs.get('optimize', False)
  if casting == 'safe':
    operands = np_array_ops._promote_dtype(*operands)  # pylint: disable=protected-access
  elif casting == 'no':
    operands = [np_array_ops.asarray(x) for x in operands]
  else:
    raise ValueError(
        'Invalid value for argument `casting`. '
        f'Expected casting="safe" or casting="no". Received: casting={casting}')
  if not optimize:
    # TF doesn't have a "no optimization" option.
    # TODO(wangpeng): Print a warning that np and tf use different
    #   optimizations.
    tf_optimize = 'greedy'
  elif optimize == True:  # pylint: disable=singleton-comparison,g-explicit-bool-comparison
    tf_optimize = 'greedy'
  elif optimize == 'greedy':
    tf_optimize = 'greedy'
  elif optimize == 'optimal':
    tf_optimize = 'optimal'
  else:
    raise ValueError(
        'Invalid value for argument `optimize`. '
        'Expected one of {True, "greedy", "optimal"}. '
        f'Received: optimize={optimize}')

  res = special_math_ops.einsum(subscripts, *operands, optimize=tf_optimize)
  return res
예제 #21
0
 def test_invalid_keyword_arguments(self):
   m0 = array_ops.placeholder(dtypes.int32, shape=(1, None))
   m1 = array_ops.placeholder(dtypes.int32, shape=(None, 1))
   with self.assertRaisesRegexp(TypeError,
       'invalid keyword arguments for this function: invalid1, invalid2'):
     _ = special_math_ops.einsum('ij,jk->ik', m0, m1, name="name",
                                 invalid1="value1", invalid2="value2")
예제 #22
0
파일: dsrnn.py 프로젝트: samersaabjr/DSRNN
    def call(self, inputs, state):
        """c_k_RNN basic operations
    """
        #e.g.  scipy.special.binom(3,[0,1,2,3]) = array([1., 3., 3., 1.])
        #    coeff_mat = math_ops.cast(scipy.special.binom(self._c_n, np.arange(self._c_n)) *
        #                              np.power(-1, np.flip(np.arange(self._c_n))),
        #                              dtype = dtypes.float32)
        #np.power(-1, np.arange(c_n) + 1) is the (-1)^n term

        #state dimension is [batch_size, c_k * num_hidden]
        #we want [batch_size, c_k, num_hidden]
        full_state = state[:, :self._num_units * (self._c_n - 1)]
        #full_state records the entire c_k timestep states, now we discard the earliest state from the previous step
        state = gen_array_ops.reshape(state, [-1, self._c_n, self._num_units])

        # tanh(W[h,x]+b)
        current_state = math_ops.matmul(
            array_ops.concat([inputs, state[:, 0, :]], 1), self._kernel)
        current_state = nn_ops.bias_add(current_state, self._bias)
        current_state = self._activation(current_state)

        current_state += special_math_ops.einsum('ijk,jk->ik', state,
                                                 self._kernel_A)
        #    current_state = special_math_ops.einsum('ijk,jk->ik', state, self._kernel_A) + special_math_ops.einsum('ij,j->ij', current_state, (1-math_ops.reduce_sum(self._kernel_A, 0)))
        #Einstein summation, state: [batch_size, c_k, num_hidden]
        #kernel_A: [c_k, num_hidden, num_hidden], result: [batch_size, num_hidden]
        full_state = array_ops.concat([current_state, full_state], axis=1)

        output = array_ops.concat([
            self._kernel[inputs.get_shape().as_list()[1]:, :], self._kernel_A
        ],
                                  axis=0)
        return output, full_state
예제 #23
0
 def test_invalid_keyword_arguments(self):
   r = np.random.RandomState(0)
   a = array_ops.placeholder_with_default(r.randn(2, 3), shape=(2, 3))
   b = array_ops.placeholder_with_default(r.randn(3, 4), shape=(3, 4))
   with self.assertRaises(TypeError):
     _ = special_math_ops.einsum(
         'ij,jk->ik', a, b, name='name', invalid1='value1', invalid2='value2')
  def run_test(self, axes, expanded_axes=None):
    expanded_axes = expanded_axes if expanded_axes is not None else axes
    all_axes = {ax: np.random.randint(4, 12)
                for ax in expanded_axes if ax.isalpha()}

    input_vals = []
    input_axes, _, _ = axes.partition('->')

    for idx in input_axes.split(','):
      shape = [all_axes[ax] for ax in idx if ax.isalpha()]
      input_vals.append(np.random.random(shape))

    input_tensors = [constant_op.constant(val) for val in input_vals]
    output_tensor = special_math_ops.einsum(axes, *input_tensors)

    with self.session(use_gpu=True):
      output_value = self.evaluate(output_tensor)

    correct_value = 0
    if axes == 'ijji':
      output = math_ops.trace(*input_tensors)
      correct_value = self.evaluate(output)
    else:
      correct_value = np.einsum(axes, *input_vals)
    err = np.abs(correct_value - output_value).max()
    self.assertLess(err, 1e-8)
예제 #25
0
 def testImplicitForm(self):
     for dtype in self.float_types:
         self._testBinary(
             lambda x, y: special_math_ops.einsum('ijk,kji', x, y),
             np.array([[[1, 3], [2, 5], [6, 8]]], dtype=dtype),
             np.array([[[1], [3], [2]], [[5], [6], [8]]], dtype=dtype),
             expected=np.array(128, dtype=dtype))
    def benchmarkEinsum(self):
        for equation, dim in self.cases:
            with ops.Graph().as_default(), \
                session.Session(config=benchmark.benchmark_config()) as sess, \
                ops.device('/cpu:0'):
                r = np.random.RandomState(0)
                input_subscripts = equation.split('->')[0].split(',')
                input_vars = []
                for subscript in input_subscripts:
                    input_shape = (dim, ) * len(subscript)
                    input_vars.append(
                        variables.Variable(
                            np.array(r.randn(*input_shape), np.float32)))
                self.evaluate(variables.global_variables_initializer())

                # Call einsum_v1.
                self.run_op_benchmark(
                    sess,
                    special_math_ops.einsum(equation, *input_vars),
                    min_iters=50,
                    name='einsum_v1_cpu_({})_{}'.format(equation, dim))

                # Call gen_linalg_ops.einsum.
                self.run_op_benchmark(
                    sess,
                    gen_linalg_ops.einsum(input_vars, equation),
                    min_iters=50,
                    name='einsum_v2_cpu_({})_{}'.format(equation, dim))
예제 #27
0
 def _convdiag_sum_of_squares(self, patches, outputs_grad):
   # This computes the sum of the squares of the per-training-case "gradients".
   # It does this simply by computing a giant tensor containing all of these,
   # doing an entry-wise square, and them summing along the batch dimension.
   case_wise_gradients = special_math_ops.einsum("bijk,bijl->bkl", patches,
                                                 outputs_grad)
   return math_ops.reduce_sum(math_ops.square(case_wise_gradients), axis=0)
예제 #28
0
def einsum(subscripts, *operands, **kwargs):  # pylint: disable=missing-docstring
    casting = kwargs.get('casting', 'safe')
    optimize = kwargs.get('optimize', False)
    if casting == 'safe':
        operands = np_array_ops._promote_dtype(*operands)  # pylint: disable=protected-access
    elif casting == 'no':
        operands = [np_array_ops.asarray(x) for x in operands]
    else:
        raise ValueError('casting policy not supported: %s' % casting)
    if not optimize:
        # TF doesn't have a "no optimization" option.
        # TODO(wangpeng): Print a warning that np and tf use different
        #   optimizations.
        tf_optimize = 'greedy'
    elif optimize == True:  # pylint: disable=singleton-comparison,g-explicit-bool-comparison
        tf_optimize = 'greedy'
    elif optimize == 'greedy':
        tf_optimize = 'greedy'
    elif optimize == 'optimal':
        tf_optimize = 'optimal'
    else:
        raise ValueError('`optimize` method not supported: %s' % optimize)
    operands = [x.data for x in operands]
    res = special_math_ops.einsum(subscripts, *operands, optimize=tf_optimize)
    res = np_utils.tensor_to_ndarray(res)
    return res
예제 #29
0
 def call(self, inputs):
     ret = special_math_ops.einsum(self.equation, inputs, self.kernel)
     if self.bias is not None:
         ret += self.bias
     if self.activation is not None:
         ret = self.activation(ret)
     return ret
예제 #30
0
  def run_test(self, axes, expanded_axes=None):
    expanded_axes = expanded_axes if expanded_axes is not None else axes
    all_axes = {ax: np.random.randint(4, 12)
                for ax in expanded_axes if ax.isalpha()}

    input_vals = []
    input_axes, _, _ = axes.partition('->')

    for idx in input_axes.split(','):
      shape = [all_axes[ax] for ax in idx if ax.isalpha()]
      input_vals.append(np.random.random(shape))

    input_tensors = [constant_op.constant(val) for val in input_vals]
    output_tensor = special_math_ops.einsum(axes, *input_tensors)

    with self.session(use_gpu=True):
      output_value = self.evaluate(output_tensor)

    correct_value = 0
    if axes == 'ijji':
      output = math_ops.trace(*input_tensors)
      correct_value = self.evaluate(output)
    else:
      correct_value = np.einsum(axes, *input_vals)
    err = np.abs(correct_value - output_value).max()
    self.assertLess(err, 1e-8)
예제 #31
0
 def test_dim_mismatch(self):
   for axes, input_shapes in self.dim_mismatch_cases:
     inputs = [
         array_ops.placeholder(dtypes.float32, shape=shape)
         for shape in input_shapes
     ]
     with self.assertRaises(ValueError):
       _ = special_math_ops.einsum(axes, *inputs)
예제 #32
0
 def test_invalid(self):
   for axes in self.invalid_cases:
     inputs = [
         array_ops.placeholder(dtypes.float32, shape=(3, 4)),
         array_ops.placeholder(dtypes.float32, shape=(3, 4)),
     ]
     with self.assertRaises(ValueError):
       _ = special_math_ops.einsum(axes, *inputs)
 def test_dim_mismatch(self):
     for axes, input_shapes in self.dim_mismatch_cases:
         inputs = [
             array_ops.placeholder(dtypes.float32, shape=shape)
             for shape in input_shapes
         ]
         with self.assertRaises(ValueError):
             _ = special_math_ops.einsum(axes, *inputs)
 def test_invalid(self):
     for axes in self.invalid_cases:
         inputs = [
             array_ops.placeholder(dtypes.float32, shape=(3, 4)),
             array_ops.placeholder(dtypes.float32, shape=(3, 4)),
         ]
         with self.assertRaises(ValueError):
             _ = special_math_ops.einsum(axes, *inputs)
    def _compute_new_cov(self, idx=0):
        with _maybe_colocate_with(self._outputs_grads[idx],
                                  self._colocate_cov_ops_with_inputs):
            batch_size = array_ops.shape(self._patches)[0]
            batch_size = array_ops.shape(self._patches)[0]
            transformed_inputs = special_math_ops.einsum(
                "bijk,kl->bijl", self._patches, self._input_factor_eigen_basis)
            transformed_outputs_grads = special_math_ops.einsum(
                "bijk,kl->bijl", self._outputs_grads[idx],
                self._output_factor_eigen_basis)
            new_scale = special_math_ops.einsum("bijk,bijl->bkl",
                                                transformed_inputs,
                                                transformed_outputs_grads)
            new_cov = math_ops.reduce_sum(math_ops.square(new_scale), axis=0)
            new_cov /= math_ops.cast(batch_size, new_scale.dtype)

            return new_cov
예제 #36
0
 def _check_gradient(self, s, *input_shapes):
   with self.cached_session():
     r = np.random.RandomState(0)
     inputs = [np.array(r.randn(*shape)) for shape in input_shapes]
     input_tensors = [constant_op.constant(x, shape=x.shape) for x in inputs]
     analytical, numerical = gradient_checker_v2.compute_gradient(
         lambda *xs: special_math_ops.einsum(s, *xs), input_tensors)
     self.assertLess(
         gradient_checker_v2.max_error(analytical, numerical), 1e-4)
예제 #37
0
  def test_input_is_placeholder(self):
    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(1, None))
      m1 = array_ops.placeholder(dtypes.int32, shape=(None, 1))
      out = special_math_ops.einsum('ij,jk->ik', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[1, 2, 3]],
            m1: [[2], [1], [1]],
        }
        np.testing.assert_almost_equal(
            [[7]], sess.run(out, feed_dict=feed_dict))

    with ops.Graph().as_default():
      m0 = array_ops.placeholder(dtypes.int32, shape=(None, 3))
      m1 = array_ops.placeholder(dtypes.int32, shape=(3,))
      out = special_math_ops.einsum('ij,j->i', m0, m1)
      with session.Session() as sess:
        feed_dict = {
            m0: [[1, 2, 3]],
            m1: [2, 1, 1],
        }
        np.testing.assert_almost_equal([7], sess.run(out, feed_dict=feed_dict))
예제 #38
0
  def call(self, inputs, states):
    # inputs should be in [(batch, input_1), (batch, input_2, input_3)]
    # state should be in shape [(batch, unit_1), (batch, unit_2, unit_3)]
    flatten_inputs = nest.flatten(inputs)
    s1, s2 = states

    output_1 = math_ops.matmul(flatten_inputs[0], self.kernel_1)
    output_2_3 = special_math_ops.einsum('bij,ijkl->bkl', flatten_inputs[1],
                                         self.kernel_2_3)
    state_1 = s1 + output_1
    state_2_3 = s2 + output_2_3

    output = [output_1, output_2_3]
    new_states = NestedState(s1=state_1, s2=state_2_3)

    return output, new_states
  def run_test(self, axes):
    all_axes = {ax: np.random.randint(4, 12) for ax in axes if ax.isalpha()}

    input_vals = []
    input_axes, _, _ = axes.partition('->')

    for idx in input_axes.split(','):
      shape = [all_axes[ax] for ax in idx]
      input_vals.append(np.random.random(shape))

    input_tensors = [constant_op.constant(val) for val in input_vals]
    output_tensor = special_math_ops.einsum(axes, *input_tensors)

    with self.test_session(use_gpu=True):
      output_value = output_tensor.eval()

    correct_value = np.einsum(axes, *input_vals)

    err = np.abs(correct_value - output_value).max()
    print(axes, err)
    assert err < 1e-8
 def test_ellipses_with_unknown_input_dim(self):
   with ops.Graph().as_default():
     m0 = array_ops.placeholder(dtypes.float32)
     m1 = array_ops.placeholder_with_default([[3, 2]], shape=(None, 2))
     with self.assertRaises(ValueError):
       _ = special_math_ops.einsum('...jkl,...j->...kl', m0, m1)
예제 #41
0
 def test_repeated_axis_single_input(self):
   x = array_ops.placeholder(dtypes.float32, shape=[2, 2])
   with self.assertRaises(ValueError):
     _ = special_math_ops.einsum('ii->', x)
 def test_multiple_ellipses(self):
   m0 = array_ops.placeholder_with_default([[[[1, 2]], [[2, 1]]]],
                                           shape=(None, 2, None, 2))
   m1 = array_ops.placeholder_with_default([[3, 2]], shape=(None, 2))
   out = special_math_ops.einsum('...jkl,...j->...kl', m0, m1)
   self.assertAllClose([[[7, 8]]], self.evaluate(out))