예제 #1
0
 def _compare(self, signals, norm, dct_type, atol=5e-4, rtol=5e-4):
     """Compares (I)DCT to SciPy (if available) and a NumPy implementation."""
     np_dct = NP_DCT[dct_type](signals, norm)
     tf_dct = spectral_ops.dct(signals, type=dct_type, norm=norm).eval()
     self.assertAllClose(np_dct, tf_dct, atol=atol, rtol=rtol)
     np_idct = NP_IDCT[dct_type](signals, norm)
     tf_idct = spectral_ops.idct(signals, type=dct_type, norm=norm).eval()
     self.assertAllClose(np_idct, tf_idct, atol=atol, rtol=rtol)
     if fftpack:
         scipy_dct = fftpack.dct(signals, type=dct_type, norm=norm)
         self.assertAllClose(scipy_dct, tf_dct, atol=atol, rtol=rtol)
         scipy_idct = fftpack.idct(signals, type=dct_type, norm=norm)
         self.assertAllClose(scipy_idct, tf_idct, atol=atol, rtol=rtol)
     # Verify inverse(forward(s)) == s, up to a normalization factor.
     tf_idct_dct = spectral_ops.idct(tf_dct, type=dct_type,
                                     norm=norm).eval()
     tf_dct_idct = spectral_ops.dct(tf_idct, type=dct_type,
                                    norm=norm).eval()
     if norm is None:
         if dct_type == 1:
             tf_idct_dct *= 0.5 / (signals.shape[-1] - 1)
             tf_dct_idct *= 0.5 / (signals.shape[-1] - 1)
         else:
             tf_idct_dct *= 0.5 / signals.shape[-1]
             tf_dct_idct *= 0.5 / signals.shape[-1]
     self.assertAllClose(signals, tf_idct_dct, atol=atol, rtol=rtol)
     self.assertAllClose(signals, tf_dct_idct, atol=atol, rtol=rtol)
예제 #2
0
 def _compare(self, signals, norm, dct_type, atol=5e-4, rtol=5e-4):
   """Compares (I)DCT to SciPy (if available) and a NumPy implementation."""
   np_dct = NP_DCT[dct_type](signals, norm)
   tf_dct = spectral_ops.dct(signals, type=dct_type, norm=norm).eval()
   self.assertAllClose(np_dct, tf_dct, atol=atol, rtol=rtol)
   np_idct = NP_IDCT[dct_type](signals, norm)
   tf_idct = spectral_ops.idct(signals, type=dct_type, norm=norm).eval()
   self.assertAllClose(np_idct, tf_idct, atol=atol, rtol=rtol)
   if fftpack:
     scipy_dct = fftpack.dct(signals, type=dct_type, norm=norm)
     self.assertAllClose(scipy_dct, tf_dct, atol=atol, rtol=rtol)
     scipy_idct = fftpack.idct(signals, type=dct_type, norm=norm)
     self.assertAllClose(scipy_idct, tf_idct, atol=atol, rtol=rtol)
   # Verify inverse(forward(s)) == s, up to a normalization factor.
   tf_idct_dct = spectral_ops.idct(
       tf_dct, type=dct_type, norm=norm).eval()
   tf_dct_idct = spectral_ops.dct(
       tf_idct, type=dct_type, norm=norm).eval()
   if norm is None:
     if dct_type == 1:
       tf_idct_dct *= 0.5 / (signals.shape[-1] - 1)
       tf_dct_idct *= 0.5 / (signals.shape[-1] - 1)
     else:
       tf_idct_dct *= 0.5 / signals.shape[-1]
       tf_dct_idct *= 0.5 / signals.shape[-1]
   self.assertAllClose(signals, tf_idct_dct, atol=atol, rtol=rtol)
   self.assertAllClose(signals, tf_dct_idct, atol=atol, rtol=rtol)
예제 #3
0
파일: dct.py 프로젝트: yunzqq/RDL-SE
def stdct(signals,
          frame_length,
          frame_step,
          fft_length=None,
          window_fn=functools.partial(window_ops.hann_window, periodic=True),
          pad_end=False,
          name=None):
    with ops.name_scope(name, 'stdct', [signals, frame_length, frame_step]):
        signals = ops.convert_to_tensor(signals, name='signals')
        signals.shape.with_rank_at_least(1)
        frame_length = ops.convert_to_tensor(frame_length, name='frame_length')
        frame_length.shape.assert_has_rank(0)
        frame_step = ops.convert_to_tensor(frame_step, name='frame_step')
        frame_step.shape.assert_has_rank(0)

        if fft_length is None:
            fft_length = _enclosing_power_of_two(frame_length)
        else:
            fft_length = ops.convert_to_tensor(fft_length, name='fft_length')

        framed_signals = shape_ops.frame(signals,
                                         frame_length,
                                         frame_step,
                                         pad_end=pad_end)

        if window_fn is not None:
            window = window_fn(frame_length, dtype=framed_signals.dtype)
            framed_signals *= window

        return spectral_ops.dct(framed_signals)
예제 #4
0
 def _compare(self, signals, norm, atol=5e-4, rtol=5e-4):
   """Compares the DCT to SciPy (if available) and a NumPy implementation."""
   np_dct = self._np_dct2(signals, norm)
   tf_dct = spectral_ops.dct(signals, type=2, norm=norm).eval()
   self.assertAllClose(np_dct, tf_dct, atol=atol, rtol=rtol)
   if fftpack:
     scipy_dct = fftpack.dct(signals, type=2, norm=norm)
     self.assertAllClose(scipy_dct, tf_dct, atol=atol, rtol=rtol)
예제 #5
0
 def test_error(self):
   signals = np.random.rand(10)
   # Unsupported type.
   with self.assertRaises(ValueError):
     spectral_ops.dct(signals, type=3)
   # Unknown normalization.
   with self.assertRaises(ValueError):
     spectral_ops.dct(signals, norm="bad")
   with self.assertRaises(NotImplementedError):
     spectral_ops.dct(signals, n=10)
   with self.assertRaises(NotImplementedError):
     spectral_ops.dct(signals, axis=0)
예제 #6
0
def mfccs_from_log_mel_spectrograms(log_mel_spectrograms, name=None):
    """Computes [MFCCs][mfcc] of `log_mel_spectrograms`.

  Implemented with GPU-compatible ops and supports gradients.

  [Mel-Frequency Cepstral Coefficient (MFCC)][mfcc] calculation consists of
  taking the DCT-II of a log-magnitude mel-scale spectrogram. [HTK][htk]'s MFCCs
  use a particular scaling of the DCT-II which is almost orthogonal
  normalization. We follow this convention.

  All `num_mel_bins` MFCCs are returned and it is up to the caller to select
  a subset of the MFCCs based on their application. For example, it is typical
  to only use the first few for speech recognition, as this results in
  an approximately pitch-invariant representation of the signal.

  For example:

  ```python
  sample_rate = 16000.0
  # A Tensor of [batch_size, num_samples] mono PCM samples in the range [-1, 1].
  pcm = tf.placeholder(tf.float32, [None, None])

  # A 1024-point STFT with frames of 64 ms and 75% overlap.
  stfts = tf.contrib.signal.stft(pcm, frame_length=1024, frame_step=256,
                                 fft_length=1024)
  spectrograms = tf.abs(stfts)

  # Warp the linear scale spectrograms into the mel-scale.
  num_spectrogram_bins = stfts.shape[-1].value
  lower_edge_hertz, upper_edge_hertz, num_mel_bins = 80.0, 7600.0, 80
  linear_to_mel_weight_matrix = tf.contrib.signal.linear_to_mel_weight_matrix(
    num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz,
    upper_edge_hertz)
  mel_spectrograms = tf.tensordot(
    spectrograms, linear_to_mel_weight_matrix, 1)
  mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate(
    linear_to_mel_weight_matrix.shape[-1:]))

  # Compute a stabilized log to get log-magnitude mel-scale spectrograms.
  log_mel_spectrograms = tf.log(mel_spectrograms + 1e-6)

  # Compute MFCCs from log_mel_spectrograms and take the first 13.
  mfccs = tf.contrib.signal.mfccs_from_log_mel_spectrograms(
    log_mel_spectrograms)[..., :13]
  ```

  Args:
    log_mel_spectrograms: A `[..., num_mel_bins]` `float32` `Tensor` of
      log-magnitude mel-scale spectrograms.
    name: An optional name for the operation.
  Returns:
    A `[..., num_mel_bins]` `float32` `Tensor` of the MFCCs of
    `log_mel_spectrograms`.

  Raises:
    ValueError: If `num_mel_bins` is not positive.

  [mfcc]: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
  [htk]: https://en.wikipedia.org/wiki/HTK_(software)
  """
    with ops.name_scope(name, 'mfccs_from_log_mel_spectrograms',
                        [log_mel_spectrograms]):
        # Compute the DCT-II of the resulting log-magnitude mel-scale spectrogram.
        # The DCT used in HTK scales every basis vector by sqrt(2/N), which is the
        # scaling required for an "orthogonal" DCT-II *except* in the 0th bin, where
        # the true orthogonal DCT (as implemented by scipy) scales by sqrt(1/N). For
        # this reason, we don't apply orthogonal normalization and scale the DCT by
        # `0.5 * sqrt(2/N)` manually.
        log_mel_spectrograms = ops.convert_to_tensor(log_mel_spectrograms,
                                                     dtype=dtypes.float32)
        if (log_mel_spectrograms.shape.ndims
                and log_mel_spectrograms.shape.dims[-1].value is not None):
            num_mel_bins = log_mel_spectrograms.shape.dims[-1].value
            if num_mel_bins == 0:
                raise ValueError('num_mel_bins must be positive. Got: %s' %
                                 log_mel_spectrograms)
        else:
            num_mel_bins = array_ops.shape(log_mel_spectrograms)[-1]

        dct2 = spectral_ops.dct(log_mel_spectrograms)
        return dct2 * math_ops.rsqrt(math_ops.to_float(num_mel_bins) * 2.0)
예제 #7
0
 def test_error(self):
   signals = np.random.rand(10)
   # Unsupported type.
   with self.assertRaises(ValueError):
     spectral_ops.dct(signals, type=5)
   # DCT-I normalization not implemented.
   with self.assertRaises(ValueError):
     spectral_ops.dct(signals, type=1, norm="ortho")
   # DCT-I requires at least two inputs.
   with self.assertRaises(ValueError):
     spectral_ops.dct(np.random.rand(1), type=1)
   # Unknown normalization.
   with self.assertRaises(ValueError):
     spectral_ops.dct(signals, norm="bad")
   with self.assertRaises(NotImplementedError):
     spectral_ops.dct(signals, n=10)
   with self.assertRaises(NotImplementedError):
     spectral_ops.dct(signals, axis=0)
예제 #8
0
 def test_error(self):
     signals = np.random.rand(10)
     # Unsupported type.
     with self.assertRaises(ValueError):
         spectral_ops.dct(signals, type=5)
     # DCT-I normalization not implemented.
     with self.assertRaises(ValueError):
         spectral_ops.dct(signals, type=1, norm="ortho")
     # DCT-I requires at least two inputs.
     with self.assertRaises(ValueError):
         spectral_ops.dct(np.random.rand(1), type=1)
     # Unknown normalization.
     with self.assertRaises(ValueError):
         spectral_ops.dct(signals, norm="bad")
     with self.assertRaises(NotImplementedError):
         spectral_ops.dct(signals, n=10)
     with self.assertRaises(NotImplementedError):
         spectral_ops.dct(signals, axis=0)
예제 #9
0
def mfccs_from_log_mel_spectrograms(log_mel_spectrograms, name=None):
  """Computes [MFCCs][mfcc] of `log_mel_spectrograms`.

  Implemented with GPU-compatible ops and supports gradients.

  [Mel-Frequency Cepstral Coefficient (MFCC)][mfcc] calculation consists of
  taking the DCT-II of a log-magnitude mel-scale spectrogram. [HTK][htk]'s MFCCs
  use a particular scaling of the DCT-II which is almost orthogonal
  normalization. We follow this convention.

  All `num_mel_bins` MFCCs are returned and it is up to the caller to select
  a subset of the MFCCs based on their application. For example, it is typical
  to only use the first few for speech recognition, as this results in
  an approximately pitch-invariant representation of the signal.

  For example:

  ```python
  sample_rate = 16000.0
  # A Tensor of [batch_size, num_samples] mono PCM samples in the range [-1, 1].
  pcm = tf.placeholder(tf.float32, [None, None])

  # A 1024-point STFT with frames of 64 ms and 75% overlap.
  stfts = tf.contrib.signal.stft(pcm, frame_length=1024, frame_step=256,
                                 fft_length=1024)
  spectrograms = tf.abs(stfts)

  # Warp the linear scale spectrograms into the mel-scale.
  num_spectrogram_bins = stfts.shape[-1].value
  lower_edge_hertz, upper_edge_hertz, num_mel_bins = 80.0, 7600.0, 80
  linear_to_mel_weight_matrix = tf.contrib.signal.linear_to_mel_weight_matrix(
    num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz,
    upper_edge_hertz)
  mel_spectrograms = tf.tensordot(
    spectrograms, linear_to_mel_weight_matrix, 1)
  mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate(
    linear_to_mel_weight_matrix.shape[-1:]))

  # Compute a stabilized log to get log-magnitude mel-scale spectrograms.
  log_mel_spectrograms = tf.log(mel_spectrograms + 1e-6)

  # Compute MFCCs from log_mel_spectrograms and take the first 13.
  mfccs = tf.contrib.signal.mfccs_from_log_mel_spectrograms(
    log_mel_spectrograms)[..., :13]
  ```

  Args:
    log_mel_spectrograms: A `[..., num_mel_bins]` `float32` `Tensor` of
      log-magnitude mel-scale spectrograms.
    name: An optional name for the operation.
  Returns:
    A `[..., num_mel_bins]` `float32` `Tensor` of the MFCCs of
    `log_mel_spectrograms`.

  Raises:
    ValueError: If `num_mel_bins` is not positive.

  [mfcc]: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
  [htk]: https://en.wikipedia.org/wiki/HTK_(software)
  """
  with ops.name_scope(name, 'mfccs_from_log_mel_spectrograms',
                      [log_mel_spectrograms]):
    # Compute the DCT-II of the resulting log-magnitude mel-scale spectrogram.
    # The DCT used in HTK scales every basis vector by sqrt(2/N), which is the
    # scaling required for an "orthogonal" DCT-II *except* in the 0th bin, where
    # the true orthogonal DCT (as implemented by scipy) scales by sqrt(1/N). For
    # this reason, we don't apply orthogonal normalization and scale the DCT by
    # `0.5 * sqrt(2/N)` manually.
    log_mel_spectrograms = ops.convert_to_tensor(log_mel_spectrograms,
                                                 dtype=dtypes.float32)
    if (log_mel_spectrograms.shape.ndims and
        log_mel_spectrograms.shape[-1].value is not None):
      num_mel_bins = log_mel_spectrograms.shape[-1].value
      if num_mel_bins == 0:
        raise ValueError('num_mel_bins must be positive. Got: %s' %
                         log_mel_spectrograms)
    else:
      num_mel_bins = array_ops.shape(log_mel_spectrograms)[-1]

    dct2 = spectral_ops.dct(log_mel_spectrograms)
    return dct2 * math_ops.rsqrt(num_mel_bins * 2.0)