def test_dynamic_decode_rnn_with_scheduled_embedding_training_sampler(): policy = tf.keras.mixed_precision.experimental.global_policy() sequence_length = [3, 4, 3, 1] batch_size = 4 input_depth = 7 cell_depth = 10 vocab_size = 12 max_time = max(sequence_length) embedding = tf.keras.layers.Embedding(vocab_size, input_depth) cell = tf.keras.layers.LSTMCell(cell_depth) sampler = sampler_py.ScheduledEmbeddingTrainingSampler( sampling_probability=tf.constant(1.0), embedding_fn=embedding ) my_decoder = basic_decoder.BasicDecoder(cell=cell, sampler=sampler) inputs = tf.random.uniform([batch_size, max_time, input_depth]) initial_state = cell.get_initial_state( batch_size=batch_size, dtype=policy.compute_dtype ) final_outputs, _, _ = my_decoder( inputs, initial_state=initial_state, sequence_length=sequence_length ) assert final_outputs.rnn_output.dtype == policy.compute_dtype
def test_step_with_scheduled_embedding_training_helper(): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 vocabulary_size = 10 inputs = np.random.randn(batch_size, max_time, input_depth).astype(np.float32) input_t = tf.constant(inputs) embeddings = np.random.randn(vocabulary_size, input_depth).astype(np.float32) half = tf.constant(0.5) cell = tf.keras.layers.LSTMCell(vocabulary_size) sampler = sampler_py.ScheduledEmbeddingTrainingSampler( sampling_probability=half, time_major=False) initial_state = cell.get_initial_state(batch_size=batch_size, dtype=tf.float32) my_decoder = basic_decoder.BasicDecoder(cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( input_t, sequence_length=sequence_length, embedding=embeddings, initial_state=initial_state, ) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype assert (basic_decoder.BasicDecoderOutput(vocabulary_size, tf.TensorShape( [])) == output_size) assert basic_decoder.BasicDecoderOutput(tf.float32, tf.int32) == output_dtype ( step_outputs, step_state, step_next_inputs, step_finished, ) = my_decoder.step(tf.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size assert len(first_state) == 2 assert len(step_state) == 2 assert isinstance(step_outputs, basic_decoder.BasicDecoderOutput) assert (batch_size, vocabulary_size) == step_outputs[0].shape assert (batch_size, ) == step_outputs[1].shape assert (batch_size, vocabulary_size) == first_state[0].shape assert (batch_size, vocabulary_size) == first_state[1].shape assert (batch_size, vocabulary_size) == step_state[0].shape assert (batch_size, vocabulary_size) == step_state[1].shape assert (batch_size, input_depth) == step_next_inputs.shape eval_result = { "batch_size": batch_size_t.numpy(), "first_finished": first_finished.numpy(), "first_inputs": first_inputs.numpy(), "first_state": np.asanyarray(first_state), "step_outputs": step_outputs, "step_state": np.asanyarray(step_state), "step_next_inputs": step_next_inputs.numpy(), "step_finished": step_finished.numpy(), } np.testing.assert_equal( np.asanyarray([False, False, False, False, True]), eval_result["first_finished"], ) np.testing.assert_equal( np.asanyarray([False, False, False, True, True]), eval_result["step_finished"], ) sample_ids = eval_result["step_outputs"].sample_id.numpy() assert output_dtype.sample_id == sample_ids.dtype batch_where_not_sampling = np.where(sample_ids == -1) batch_where_sampling = np.where(sample_ids > -1) np.testing.assert_equal( eval_result["step_next_inputs"][batch_where_sampling], embeddings[sample_ids[batch_where_sampling]], ) np.testing.assert_equal( eval_result["step_next_inputs"][batch_where_not_sampling], np.squeeze(inputs[batch_where_not_sampling, 1], axis=0), )
def testStepWithScheduledEmbeddingTrainingHelper(self): sequence_length = [3, 4, 3, 1, 0] batch_size = 5 max_time = 8 input_depth = 7 vocabulary_size = 10 with self.cached_session(use_gpu=True): inputs = np.random.randn(batch_size, max_time, input_depth).astype( np.float32 ) input_t = tf.constant(inputs) embeddings = np.random.randn(vocabulary_size, input_depth).astype( np.float32 ) half = tf.constant(0.5) cell = tf.keras.layers.LSTMCell(vocabulary_size) sampler = sampler_py.ScheduledEmbeddingTrainingSampler( sampling_probability=half, time_major=False ) initial_state = cell.get_initial_state( batch_size=batch_size, dtype=tf.float32 ) my_decoder = basic_decoder.BasicDecoder(cell=cell, sampler=sampler) (first_finished, first_inputs, first_state) = my_decoder.initialize( input_t, sequence_length=sequence_length, embedding=embeddings, initial_state=initial_state, ) output_size = my_decoder.output_size output_dtype = my_decoder.output_dtype self.assertEqual( basic_decoder.BasicDecoderOutput(vocabulary_size, tf.TensorShape([])), output_size, ) self.assertEqual( basic_decoder.BasicDecoderOutput(tf.float32, tf.int32), output_dtype ) ( step_outputs, step_state, step_next_inputs, step_finished, ) = my_decoder.step(tf.constant(0), first_inputs, first_state) batch_size_t = my_decoder.batch_size self.assertLen(first_state, 2) self.assertLen(step_state, 2) self.assertTrue(isinstance(step_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual((batch_size, vocabulary_size), step_outputs[0].get_shape()) self.assertEqual((batch_size,), step_outputs[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), first_state[1].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[0].get_shape()) self.assertEqual((batch_size, vocabulary_size), step_state[1].get_shape()) self.assertEqual((batch_size, input_depth), step_next_inputs.get_shape()) self.evaluate(tf.compat.v1.global_variables_initializer()) eval_result = self.evaluate( { "batch_size": batch_size_t, "first_finished": first_finished, "first_inputs": first_inputs, "first_state": first_state, "step_outputs": step_outputs, "step_state": step_state, "step_next_inputs": step_next_inputs, "step_finished": step_finished, } ) self.assertAllEqual( [False, False, False, False, True], eval_result["first_finished"] ) self.assertAllEqual( [False, False, False, True, True], eval_result["step_finished"] ) sample_ids = eval_result["step_outputs"].sample_id self.assertEqual(output_dtype.sample_id, sample_ids.dtype) batch_where_not_sampling = np.where(sample_ids == -1) batch_where_sampling = np.where(sample_ids > -1) self.assertAllClose( eval_result["step_next_inputs"][batch_where_sampling], embeddings[sample_ids[batch_where_sampling]], ) self.assertAllClose( eval_result["step_next_inputs"][batch_where_not_sampling], np.squeeze(inputs[batch_where_not_sampling, 1], axis=0), )