#----------Initialize---------- tf.reset_default_graph() # optimizer1 = tf.train.GradientDescentOptimizer(0.001) optimizer1 = tf.train.AdamOptimizer(0.01) # optimizer2 = tf.train.GradientDescentOptimizer(0.0005) optimizer2 = tf.train.AdamOptimizer(0.001) #----------load regressors---------- folded_cascode = Folded_Cascode() classab = ClassAB() folded_cascode_spice = Folded_Cascode_spice() classab_spice = ClassAB_spice() sxin = make_var( "amplifier", "fc_classab", (1, 28), tf.random_uniform_initializer(-np.ones((1, 28)), np.ones((1, 28)))) #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== hardcost, usercost, tf_specs, tf_param, tf_metric, tf_mid, tf_const = graph_tf( sxin, folded_cascode, classab) opt1 = optimizer1.minimize(hardcost) opt2 = optimizer2.minimize(hardcost) init = tf.global_variables_initializer() calc = 1 lastvalue = -1000000 lst_params = []
#================================================================== #***************** Building the graph *************************** #================================================================== tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() optimizer1 = tf.compat.v1.train.AdamOptimizer(0.01) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- lna1 = LNA(tech=28) sh1 = SH(tech=28) sxin = make_var( "RF_FE", "LNA", (1, 9), tf.random_uniform_initializer(-np.ones((1, 9)), np.ones((1, 9)))) hardcost, usercost, tf_specs, tf_params, tf_metrics, tf_const = graph_tf( sxin, lna1, sh1) #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== opt1 = optimizer1.minimize(usercost) opt2 = optimizer2.minimize(hardcost) init = tf.compat.v1.global_variables_initializer() calc = 1 lastvalue = -1000000 lst_params = []
optimizer1 = tf.compat.v1.train.GradientDescentOptimizer(0.01) optimizer2 = tf.compat.v1.train.GradientDescentOptimizer(0.001) # ----------load regressors---------- seqp11 = SEQ1() seqp21 = SEQ2() compp1 = COMPP2() thdac1 = THDAC2() comppspice1 = Compp_spice2() dacthspice1 = DACTH2_spice() seqp1spice1 = Seqpart1_spice() seqp2spice1 = Seqpart2_spice() var_in = make_var( "SAR_ADC", "SEQ_COMPP_THDAC", (1, 26), tf.random_uniform_initializer(-np.ones((1, 26)), np.ones((1, 26)))) xload = tf.compat.v1.placeholder(tf.float32, shape=(1, 26)) initvar = var_in.assign(xload) sxin = 2 * tf.math.sigmoid(var_in) - 1.0 hardcost, softcost, tf_specs, tf_params, tf_metrics, tf_mids, tf_const = graph_tf3( sxin, seqp11, seqp21, compp1, thdac1) # tf.float32.real_dtype # ================================================================== # ******************** Tensorflow Initiation ********************* # ==================================================================
#***************** Building the graph *************************** #================================================================== tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() # optimizer1 = tf.train.GradientDescentOptimizer(0.001) optimizer1 = tf.compat.v1.train.AdamOptimizer(0.001) # optimizer2 = tf.train.GradientDescentOptimizer(0.0005) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- vcdl = vcdl() dll = dll() sxin = make_var("vcdl", "dll", (1, 10), tf.random_uniform_initializer(-np.ones((1, 10)), np.ones((1, 10)))) #Giao# #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== hardcost, usercost, tf_specs, tf_param, tf_metric, tf_mid, tf_const = graph_tf( sxin, vcdl, dll) opt1 = optimizer1.minimize(hardcost) opt2 = optimizer2.minimize(hardcost) init = tf.compat.v1.global_variables_initializer() calc = 1 lastvalue = -1000000 lst_params = []
#***************** Building the graph *************************** #================================================================== tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() # optimizer1 = tf.train.GradientDescentOptimizer(0.001) optimizer1 = tf.compat.v1.train.AdamOptimizer(0.001) # optimizer2 = tf.train.GradientDescentOptimizer(0.0005) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- cs_driver_cml = cs_driver_cml() cs_array_8b = cs_array_8b() sxin = make_var("cs_driver_cml", "cs_array_8b", (1, 9), tf.random_uniform_initializer(-np.ones((1, 9)), np.ones((1, 9)))) #Giao# #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== hardcost, usercost, tf_specs, tf_param, tf_metric, tf_mid, tf_const = graph_tf( sxin, cs_driver_cml, cs_array_8b) opt1 = optimizer1.minimize(hardcost) opt2 = optimizer2.minimize(hardcost) init = tf.compat.v1.global_variables_initializer() calc = 1 lastvalue = -1000000 lst_params = []
#***************** Building the graph *************************** #================================================================== tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() # optimizer1 = tf.train.GradientDescentOptimizer(0.001) optimizer1 = tf.compat.v1.train.AdamOptimizer(0.001) # optimizer2 = tf.train.GradientDescentOptimizer(0.0005) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- dtc1 = DTC1() dtc2 = DTC2() sxin = make_var( "DTC1", "DTC2", (1, 4), tf.random_uniform_initializer(-np.ones((1, 4)), np.ones((1, 4)))) #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== hardcost, usercost, tf_specs, tf_param, tf_metric, tf_mid, tf_const = graph_tf( sxin, dtc1, dtc2) opt1 = optimizer1.minimize(hardcost) opt2 = optimizer2.minimize(hardcost) init = tf.compat.v1.global_variables_initializer() calc = 1 lastvalue = -1000000 lst_params = []
#================================================================== tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() # Define to optimizers. You can change the values in the parenthesis, which is the learning rate optimizer1 = tf.compat.v1.train.AdamOptimizer(0.001) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- # Define an object in class INV inv = INV() # Initialize all design parameters. We use random initialization in this case. We have in total 2 design parameters, 1 module here sxin = make_var( "INV", "INV", (1, 2), tf.random_uniform_initializer(-np.ones((1, 2)), np.ones((1, 2)))) #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== hardcost, usercost, tf_specs, tf_param, tf_metric, tf_mid, tf_const = graph_tf( sxin, inv) # Optimizer1 will minimize hardcost, and optimizer 2 will minimize usercost. Both are defined previously. opt1 = optimizer1.minimize(hardcost) opt2 = optimizer2.minimize(usercost) init = tf.compat.v1.global_variables_initializer() calc = 1 lastvalue = -1000000
tf.compat.v1.disable_eager_execution() #----------Initialize---------- tf.compat.v1.reset_default_graph() optimizer1 = tf.compat.v1.train.AdamOptimizer(0.01) optimizer2 = tf.compat.v1.train.AdamOptimizer(0.001) #----------load regressors---------- vco1 = VCO(tech=65) inbuf2 = INBUF2(tech=65) #--------load spice netlists-------- vcospice1 = VCOSpice() inbufspice2 = INBUF2Spice() var_in = make_var( "VCO_ADC", "BUF_VCO", (1, 12), tf.random_uniform_initializer(-np.ones((1, 12)), np.ones((1, 12)))) hardcost, usercost, tf_specs, tf_params, tf_metrics, tf_mids, tf_const = graph_tf2( var_in, vco1, inbuf2) #================================================================== #******************** Tensorflow Initiation ********************* #================================================================== opt1 = optimizer1.minimize(usercost) opt2 = optimizer2.minimize(hardcost) init = tf.compat.v1.global_variables_initializer() calc = 1