예제 #1
0
 def _checked_stamp_parameter(self, name, spec, graph=None):
     """Returns object stamped in the graph after verifying its bindings."""
     if graph is None:
         graph = tf.get_default_graph()
     val, binding = graph_utils.stamp_parameter_in_graph(name, spec, graph)
     self._assert_binding_matches_type_and_value(
         binding, computation_types.to_type(spec), val, graph)
     return val
def serialize_py_fn_as_tf_computation(target, parameter_type, context_stack):
    """Serializes the 'target' as a TF computation with a given parameter type.

  See also `serialize_tf2_as_tf_computation` for TensorFlow 2
  serialization.

  Args:
    target: The entity to convert into and serialize as a TF computation. This
      can currently only be a Python function. In the future, we will add here
      support for serializing the various kinds of non-eager and eager
      functions, and eventually aim at full support for and compliance with TF
      2.0. This function is currently required to declare either zero parameters
      if `parameter_type` is `None`, or exactly one parameter if it's not
      `None`.  The nested structure of this parameter must correspond to the
      structure of the 'parameter_type'. In the future, we may support targets
      with multiple args/keyword args (to be documented in the API and
      referenced from here).
    parameter_type: The parameter type specification if the target accepts a
      parameter, or `None` if the target doesn't declare any parameters. Either
      an instance of `types.Type`, or something that's convertible to it by
      `types.to_type()`.
    context_stack: The context stack to use.

  Returns:
    A tuple of (`pb.Computation`, `tff.Type`), where the computation contains
    the instance with the `pb.TensorFlow` variant set, and the type is an
    instance of `tff.Type`, potentially including Python container annotations,
    for use by TensorFlow computation wrappers.

  Raises:
    TypeError: If the arguments are of the wrong types.
    ValueError: If the signature of the target is not compatible with the given
      parameter type.
  """
    # TODO(b/113112108): Support a greater variety of target type signatures,
    # with keyword args or multiple args corresponding to elements of a tuple.
    # Document all accepted forms with examples in the API, and point to there
    # from here.

    py_typecheck.check_type(target, types.FunctionType)
    py_typecheck.check_type(context_stack, context_stack_base.ContextStack)
    parameter_type = computation_types.to_type(parameter_type)
    argspec = inspect.getargspec(target)  # pylint: disable=deprecated-method

    with tf.Graph().as_default() as graph:
        args = []
        if parameter_type is not None:
            if len(argspec.args) != 1:
                raise ValueError(
                    'Expected the target to declare exactly one parameter, '
                    'found {}.'.format(repr(argspec.args)))
            parameter_name = argspec.args[0]
            parameter_value, parameter_binding = graph_utils.stamp_parameter_in_graph(
                parameter_name, parameter_type, graph)
            args.append(parameter_value)
        else:
            if argspec.args:
                raise ValueError(
                    'Expected the target to declare no parameters, found {}.'.
                    format(repr(argspec.args)))
            parameter_binding = None
        context = tf_computation_context.TensorFlowComputationContext(graph)
        with context_stack.install(context):
            result = target(*args)

            # TODO(b/122081673): This needs to change for TF 2.0. We may also
            # want to allow the person creating a tff.tf_computation to specify
            # a different initializer; e.g., if it is known that certain
            # variables will be assigned immediately to arguments of the function,
            # then it is wasteful to initialize them before this.
            #
            # The following is a bit of a work around: the collections below may
            # contain variables more than once, hence we throw into a set. TFF needs
            # to ensure all variables are initialized, but not all variables are
            # always in the collections we expect. tff.learning._KerasModel tries to
            # pull Keras variables (that may or may not be in GLOBAL_VARIABLES) into
            # TFF_MODEL_VARIABLES for now.
            all_variables = set(
                tf.compat.v1.global_variables() +
                tf.compat.v1.local_variables() + tf.compat.v1.get_collection(
                    graph_keys.GraphKeys.VARS_FOR_TFF_TO_INITIALIZE))
            if all_variables:
                # Use a readable but not-too-long name for the init_op.
                name = 'init_op_for_' + '_'.join(
                    [v.name.replace(':0', '') for v in all_variables])
                if len(name) > 50:
                    name = 'init_op_for_{}_variables'.format(
                        len(all_variables))
                with tf.control_dependencies(context.init_ops):
                    # Before running the main new init op, run any initializers for sub-
                    # computations from context.init_ops. Variables from import_graph_def
                    # will not make it into the global collections, and so will not be
                    # initialized without this code path.
                    init_op_name = tf.compat.v1.initializers.variables(
                        all_variables, name=name).name
            elif context.init_ops:
                init_op_name = tf.group(*context.init_ops,
                                        name='subcomputation_init_ops').name
            else:
                init_op_name = None

        result_type, result_binding = graph_utils.capture_result_from_graph(
            result, graph)

    annotated_type = computation_types.FunctionType(parameter_type,
                                                    result_type)

    return pb.Computation(type=pb.Type(function=pb.FunctionType(
        parameter=type_serialization.serialize_type(parameter_type),
        result=type_serialization.serialize_type(result_type))),
                          tensorflow=pb.TensorFlow(
                              graph_def=serialization_utils.pack_graph_def(
                                  graph.as_graph_def()),
                              parameter=parameter_binding,
                              result=result_binding,
                              initialize_op=init_op_name)), annotated_type
예제 #3
0
def pad_graph_inputs_to_match_type(comp, type_signature):
    r"""Pads the parameter bindings of `comp` to match `type_signature`.

  The padded parameters here are in effect dummy bindings--they are not
  plugged in elsewhere in `comp`. This pattern is necessary to transform TFF
  expressions of the form:

                            Lambda(arg)
                                |
                              Call
                             /     \
          CompiledComputation       Tuple
                                      |
                                  Selection[i]
                                      |
                                    Ref(arg)

  into the form:

                          CompiledComputation

  in the case where arg in the above picture represents an n-tuple, where n > 1.

  Notice that some type manipulation must take place to execute the
  transformation outlined above, or anything similar to it, since the Lambda
  we are looking to replace accepts a parameter of an n-tuple, whereas the
  `CompiledComputation` represented above accepts only a 1-tuple.
  `pad_graph_inputs_to_match_type` is intended as an intermediate transform in
  the transformation outlined above, since there may also need to be some
  parameter permutation via `permute_graph_inputs`.

  Notice also that the existing parameter bindings of `comp` must match the
  first elements of `type_signature`. This is to ensure that we are attempting
  to pad only compatible `CompiledComputation`s to a given type signature.

  Args:
    comp: Instance of `computation_building_blocks.CompiledComputation`
      representing the graph whose inputs we want to pad to match
      `type_signature`.
    type_signature: Instance of `computation_types.NamedTupleType` representing
      the type signature we wish to pad `comp` to accept as a parameter.

  Returns:
    A transformed version of `comp`, instance of
    `computation_building_blocks.CompiledComputation` which takes an argument
    of type `type_signature` and executes the same logic as `comp`. In
    particular, this transformed version will have the same return type as
    the original `comp`.

  Raises:
    TypeError: If the proto underlying `comp` has a parameter type which
      is not of `NamedTupleType`, the `type_signature` argument is not of type
      `NamedTupleType`, or there is a type mismatch between the declared
      parameters of `comp` and the requested `type_signature`.
    ValueError: If the requested `type_signature` is shorter than the
      parameter type signature declared by `comp`.
  """
    py_typecheck.check_type(type_signature, computation_types.NamedTupleType)
    py_typecheck.check_type(comp,
                            computation_building_blocks.CompiledComputation)
    proto = comp.proto
    graph_def = proto.tensorflow.graph_def
    graph_parameter_binding = proto.tensorflow.parameter
    proto_type = type_serialization.deserialize_type(proto.type)
    binding_oneof = graph_parameter_binding.WhichOneof('binding')
    if binding_oneof != 'tuple':
        raise TypeError(
            'Can only pad inputs of a CompiledComputation with parameter type '
            'tuple; you have attempted to pad a CompiledComputation '
            'with parameter type {}'.format(binding_oneof))
    # This line provides protection against an improperly serialized proto
    py_typecheck.check_type(proto_type.parameter,
                            computation_types.NamedTupleType)
    parameter_bindings = [x for x in graph_parameter_binding.tuple.element]
    parameter_type_elements = anonymous_tuple.to_elements(proto_type.parameter)
    type_signature_elements = anonymous_tuple.to_elements(type_signature)
    if len(parameter_bindings) > len(type_signature):
        raise ValueError(
            'We can only pad graph input bindings, never mask them. '
            'This means that a proposed type signature passed to '
            '`pad_graph_inputs_to_match_type` must have more elements '
            'than the existing type signature of the compiled '
            'computation. You have proposed a type signature of '
            'length {} be assigned to a computation with parameter '
            'type signature of length {}.'.format(len(type_signature),
                                                  len(parameter_bindings)))
    if any(x != type_signature_elements[idx]
           for idx, x in enumerate(parameter_type_elements)):
        raise TypeError(
            'The existing elements of the parameter type signature '
            'of the compiled computation in `pad_graph_inputs_to_match_type` '
            'must match the beginning of the proposed new type signature; '
            'you have proposed a parameter type of {} for a computation '
            'with existing parameter type {}.'.format(type_signature,
                                                      proto_type.parameter))
    g = tf.Graph()
    with g.as_default():
        tf.graph_util.import_graph_def(
            serialization_utils.unpack_graph_def(graph_def), name='')

    elems_to_stamp = anonymous_tuple.to_elements(
        type_signature)[len(parameter_bindings):]
    for name, type_spec in elems_to_stamp:
        if name is None:
            stamp_name = 'name'
        else:
            stamp_name = name
        _, stamped_binding = graph_utils.stamp_parameter_in_graph(
            stamp_name, type_spec, g)
        parameter_bindings.append(stamped_binding)
        parameter_type_elements.append((name, type_spec))

    new_parameter_binding = pb.TensorFlow.Binding(
        tuple=pb.TensorFlow.NamedTupleBinding(element=parameter_bindings))
    new_graph_def = g.as_graph_def()

    new_function_type = computation_types.FunctionType(parameter_type_elements,
                                                       proto_type.result)
    serialized_type = type_serialization.serialize_type(new_function_type)

    input_padded_proto = pb.Computation(
        type=serialized_type,
        tensorflow=pb.TensorFlow(
            graph_def=serialization_utils.pack_graph_def(new_graph_def),
            initialize_op=proto.tensorflow.initialize_op,
            parameter=new_parameter_binding,
            result=proto.tensorflow.result))

    return computation_building_blocks.CompiledComputation(input_padded_proto)