def test_one_of_mixed_input_type(self): block = (tdb.Identity(), tdb.Scalar('int32')) >> tdb.OneOf( key_fn=tdb.GetItem(0), case_blocks=(tdb.Function(tf.square), tdb.Function(tf.negative)), pre_block=tdb.GetItem(1)) self.assertBuilds(4, block, (0, 2)) self.assertBuilds(-2, block, (1, 2))
def test_one_of_pre(self): block = tdb.OneOf(lambda x: x['key'], {'a': tdb.GetItem('bar') >> tdb.Scalar(), 'b': tdb.GetItem('baz') >> tdb.Scalar()}, tdb.GetItem('val')) self.assertBuildsConst(42., block, {'key': 'a', 'val': {'bar': 42, 'baz': 0}}) self.assertBuildsConst(0., block, {'key': 'b', 'val': {'bar': 42, 'baz': 0}})
def test_init_raises(self): six.assertRaisesRegex(self, TypeError, 'root must have at least one output', tdc.Compiler.create, tdb.Record([])) six.assertRaisesRegex(self, TypeError, 'root outputs must all be tensors', tdc.Compiler.create, tdb.GetItem('foo')) six.assertRaisesRegex(self, TypeError, 'root output may not contain sequences', tdc.Compiler.create, tdb.Map(tdb.Scalar()))
def test_hierarchical_rnn(self): char_cell = tdl.ScopedLayer( tf.contrib.rnn.BasicLSTMCell(num_units=16), 'char_cell') word_cell = tdl.ScopedLayer( tf.contrib.rnn.BasicLSTMCell(num_units=32), 'word_cell') char_lstm = (tdb.InputTransform(lambda s: [ord(c) for c in s]) >> tdb.Map(tdb.Scalar('int32') >> tdb.Function(tdl.Embedding(128, 8))) >> tdb.RNN(char_cell)) word_lstm = (tdb.Map(char_lstm >> tdb.GetItem(1) >> tdb.Concat()) >> tdb.RNN(word_cell)) with self.test_session(): word_lstm.eval(['the', 'cat', 'sat', 'on', 'a', 'mat'])
def test_forward_declarations(self): # Define a simple expression data structure nlit = lambda x: {'op': 'lit', 'val': x} nadd = lambda x, y: {'op': 'add', 'left': x, 'right': y} nexpr = nadd(nadd(nlit(3.0), nlit(5.0)), nlit(2.0)) # Define a recursive block using forward declarations expr_fwd = tdb.ForwardDeclaration(tdt.PyObjectType(), tdt.TensorType((), 'float32')) lit_case = tdb.GetItem('val') >> tdb.Scalar() add_case = (tdb.Record({'left': expr_fwd(), 'right': expr_fwd()}) >> tdb.Function(tf.add)) expr = tdb.OneOf(lambda x: x['op'], {'lit': lit_case, 'add': add_case}) expr_fwd.resolve_to(expr) self.assertBuilds(10.0, expr, nexpr, max_depth=2)
def test_get_item_tuple(self): block = (tdb.Scalar(), tdb.Scalar()) >> tdb.GetItem(-1) self.assertBuildsConst(2., block, (1, 2))
def test_get_item_sequence(self): block = tdb.Map(tdb.Scalar()) >> tdb.GetItem(-1) self.assertBuildsConst(9., block, range(10))
def test_get_item_pyobject(self): self.assertBuildsConst(2., tdb.GetItem(1) >> tdb.Scalar(), [1, 2, 3])
def test_composition_no_output_void_type(self): b = tdb.AllOf(tdb.Void(), tdb.Scalar()) >> tdb.GetItem(1) self.assertBuildsConst(42., b, 42)
def test_repr(self): goldens = { tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>', tdb.Tensor([1, 2], 'int32', name='foo'): '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>', tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>', tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>', tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>', tdb.Function(tf.negative, name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>', tdb.Identity(): '<td.Identity>', tdb.Identity('foo'): '<td.Identity \'foo\'>', tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>', tdb.SerializedMessageToTree('foo'): '<td.SerializedMessageToTree \'foo\' ' 'py_fn=\'serialized_message_to_tree\'>', tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>', tdb.Length(): '<td.Length dtype=\'float32\'>', tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>', tdb.Slice(stop=2, name='x'): '<td.Slice \'x\' key=slice(None, 2, None)>', tdb.ForwardDeclaration(name='foo')(): '<td.ForwardDeclaration() \'foo\'>', tdb.Composition(name='x').input: '<td.Composition.input \'x\'>', tdb.Composition(name='x').output: '<td.Composition.output \'x\'>', tdb.Composition(name='x'): '<td.Composition \'x\'>', tdb.Pipe(): '<td.Pipe>', tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>', tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>', tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>', tdb.AllOf(): '<td.AllOf>', tdb.AllOf(tdb.Identity()): '<td.AllOf>', tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>', tdb.AllOf(name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.Map(tdb.Scalar(), name='x'): '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>', tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'): '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> ' 'start_block=<td.FromTensor \'ones:0\'>>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'): '<td.RNN \'x\'>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8)): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8), name='x'): '<td.RNN \'x\'>', tdb.Reduce(tdb.Function(tf.add), name='x'): '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Sum(name='foo'): '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Min(name='foo'): '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>', tdb.Max(name='foo'): '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>', tdb.Mean(name='foo'): '<td.Mean \'foo\'>', tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'): '<td.OneOf \'x\'>', tdb.Optional(tdb.Scalar(), name='foo'): '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>', tdb.Concat(1, True, 'x'): '<td.Concat \'x\' concat_dim=1 flatten=True>', tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>', tdb.Zip(name='x'): '<td.Zip \'x\'>', tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>', tdb.OneHot(2, 3, name='x'): '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>', tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>', tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>', tdb.OneHotFromList(['a', 'b'], name='foo'): '<td.OneHotFromList \'foo\'>', tdb.Nth(name='x'): '<td.Nth \'x\'>', tdb.Zeros([], 'x'): '<td.Zeros \'x\'>', tdb.Void(): '<td.Void>', tdb.Void('foo'): '<td.Void \'foo\'>', tdm.Metric('foo'): '<td.Metric \'foo\'>'} for block, expected_repr in sorted(six.iteritems(goldens), key=lambda kv: kv[1]): self.assertEqual(repr(block), expected_repr)