def predict(self, test_x, out_scaler, gen_test_file_list): #### compute predictions #### io_funcs = BinaryIOCollection() test_id_list = test_x.keys() test_id_list.sort() inference_batch_size = len(test_id_list) test_file_number = len(test_id_list) with tf.Session(graph=self.graph) as sess: new_saver = tf.train.import_meta_graph(self.ckpt_dir, "mymodel.ckpt.meta") """Notice change targets=tf.get_collection("targets")[0]""" inputs_data = self.graph.get_collection("inputs_data")[0] """Notice Change decoder_outputs=tf.get_collection("decoder_outputs")[0]""" inputs_sequence_length = self.graph.get_collection( "inputs_sequence_length")[0] target_sequence_length = self.graph.get_collection( "target_sequence_length")[0] print("loading the model parameters...") new_saver.restore(sess, os.path.join(self.ckpt_dir, "mymodel.ckpt")) print("Model parameters are successfully restored") print("generating features on held-out test data...") for utt_index in range(test_file_number): gen_test_file_name = gen_test_file_list[utt_index] temp_test_x = test_x[test_id_list[utt_index]] num_of_rows = temp_test_x.shape[0] #utt_length=[len(utt) for utt in test_x.values()] #max_step=max(utt_length) temp_test_x = tf.reshape(temp_test_x, [1, num_of_rows, self.n_in]) outputs = np.zeros(shape=[len(test_x), max_step, self.n_out], dtype=np.float32) #dec_cell=self.graph.get_collection("decoder_cell")[0] print("Generating speech parameters ...") for t in range(num_of_rows): # outputs=sess.run(inference_output,{inputs_data:temp_test_x,inputs_sequence_length:utt_length,\ # target_sequence_length:utt_length}) _outputs=sess.run(decoder_outputs,feed_dict={inputs_data:temp_test_x,targets:outputs,inputs_sequence_length:[num_of_rows],\ target_sequence_length:[num_of_rows]}) # #print _outputs[:,t,:] outputs[:, t, :] = _outputs[:, t, :] data_utils.denorm_data(outputs, out_scaler) io_funcs.array_to_binary_file(outputs, gen_test_file_name) data_utils.drawProgressBar(utt_index + 1, test_file_number)
def predict(self, test_x, out_scaler, gen_test_file_list, sequential_training=False, stateful=False): #### compute predictions #### io_funcs = BinaryIOCollection() test_id_list = test_x.keys() test_id_list.sort() test_file_number = len(test_id_list) print("generating features on held-out test data...") with tf.Session() as sess: new_saver=tf.train.import_meta_graph(os.path.join(self.ckpt_dir,"mymodel.ckpt.meta")) print "loading the model parameters..." output_layer=tf.get_collection("output_layer")[0] input_layer=tf.get_collection("input_layer")[0] new_saver.restore(sess,os.path.join(self.ckpt_dir,"mymodel.ckpt")) print "The model parameters are successfully restored" for utt_index in xrange(test_file_number): gen_test_file_name = gen_test_file_list[utt_index] temp_test_x = test_x[test_id_list[utt_index]] num_of_rows = temp_test_x.shape[0] if not sequential_training: is_training_batch=tf.get_collection("is_training_batch")[0] if self.dropout_rate!=0.0: is_training_drop=tf.get_collection("is_training_drop")[0] y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,is_training_drop:False,is_training_batch:False}) else: y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,is_training_batch:False}) else: temp_test_x=np.reshape(temp_test_x,[1,num_of_rows,self.n_in]) hybrid=0 utt_length_placeholder=tf.get_collection("utt_length")[0] if "tanh" in self.hidden_layer_type: hybrid=1 is_training_batch=tf.get_collection("is_training_batch")[0] if self.dropout_rate!=0.0: is_training_drop=tf.get_collection("is_training_drop")[0] if hybrid: y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,utt_length_placeholder:[num_of_rows],is_training_drop:False,is_training_batch:False}) else: y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,utt_length_placeholder:[num_of_rows],is_training_drop:False}) elif hybrid: y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,utt_length_placeholder:[num_of_rows],is_training_batch:False}) else: y_predict=sess.run(output_layer,feed_dict={input_layer:temp_test_x,utt_length_placeholder:[num_of_rows]}) data_utils.denorm_data(y_predict, out_scaler) io_funcs.array_to_binary_file(y_predict, gen_test_file_name) data_utils.drawProgressBar(utt_index+1, test_file_number)
def predict(self,test_x, out_scaler, gen_test_file_list): #### compute predictions #### io_funcs = BinaryIOCollection() test_id_list = test_x.keys() test_id_list.sort() inference_batch_size=len(test_id_list) test_file_number = len(test_id_list) with tf.Session(graph=self.graph) as sess: new_saver=tf.train.import_meta_graph(self.ckpt_dir,"mymodel.ckpt.meta") """Notice change targets=tf.get_collection("targets")[0]""" inputs_data=self.graph.get_collection("inputs_data")[0] """Notice Change decoder_outputs=tf.get_collection("decoder_outputs")[0]""" inputs_sequence_length=self.graph.get_collection("inputs_sequence_length")[0] target_sequence_length=self.graph.get_collection("target_sequence_length")[0] print "loading the model parameters..." new_saver.restore(sess,os.path.join(self.ckpt_dir,"mymodel.ckpt")) print "Model parameters are successfully restored" print("generating features on held-out test data...") for utt_index in xrange(test_file_number): gen_test_file_name = gen_test_file_list[utt_index] temp_test_x = test_x[test_id_list[utt_index]] num_of_rows = temp_test_x.shape[0] #utt_length=[len(utt) for utt in test_x.values()] #max_step=max(utt_length) temp_test_x = tf.reshape(temp_test_x,[1,num_of_rows,self.n_in]) outputs=np.zeros(shape=[len(test_x),max_step,self.n_out],dtype=np.float32) #dec_cell=self.graph.get_collection("decoder_cell")[0] print "Generating speech parameters ..." for t in range(num_of_rows): # outputs=sess.run(inference_output,{inputs_data:temp_test_x,inputs_sequence_length:utt_length,\ # target_sequence_length:utt_length}) _outputs=sess.run(decoder_outputs,feed_dict={inputs_data:temp_test_x,targets:outputs,inputs_sequence_length:[num_of_rows],\ target_sequence_length:[num_of_rows]}) # #print _outputs[:,t,:] outputs[:,t,:]=_outputs[:,t,:] data_utils.denorm_data(outputs, out_scaler) io_funcs.array_to_binary_file(outputs, gen_test_file_name) data_utils.drawProgressBar(utt_index+1, test_file_number)
def predict(self, test_x, out_scaler, gen_test_file_list, sequential_training=False, stateful=False): #### compute predictions #### io_funcs = BinaryIOCollection() test_id_list = list(test_x.keys()) test_id_list.sort() test_file_number = len(test_id_list) print("generating features on held-out test data...") with tf.Session() as sess: new_saver = tf.train.import_meta_graph( os.path.join(self.ckpt_dir, "mymodel.ckpt.meta")) print("loading the model parameters...") output_layer = tf.get_collection("output_layer")[0] input_layer = tf.get_collection("input_layer")[0] new_saver.restore(sess, os.path.join(self.ckpt_dir, "mymodel.ckpt")) print("The model parameters are successfully restored") for utt_index in range(test_file_number): gen_test_file_name = gen_test_file_list[utt_index] temp_test_x = test_x[test_id_list[utt_index]] num_of_rows = temp_test_x.shape[0] if not sequential_training: is_training_batch = tf.get_collection( "is_training_batch")[0] if self.dropout_rate != 0.0: is_training_drop = tf.get_collection( "is_training_drop")[0] y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, is_training_drop: False, is_training_batch: False }) else: y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, is_training_batch: False }) else: temp_test_x = np.reshape(temp_test_x, [1, num_of_rows, self.n_in]) hybrid = 0 utt_length_placeholder = tf.get_collection("utt_length")[0] if "tanh" in self.hidden_layer_type: hybrid = 1 is_training_batch = tf.get_collection( "is_training_batch")[0] if self.dropout_rate != 0.0: is_training_drop = tf.get_collection( "is_training_drop")[0] if hybrid: y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, utt_length_placeholder: [num_of_rows], is_training_drop: False, is_training_batch: False }) else: y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, utt_length_placeholder: [num_of_rows], is_training_drop: False }) elif hybrid: y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, utt_length_placeholder: [num_of_rows], is_training_batch: False }) else: y_predict = sess.run(output_layer, feed_dict={ input_layer: temp_test_x, utt_length_placeholder: [num_of_rows] }) data_utils.denorm_data(y_predict, out_scaler) io_funcs.array_to_binary_file(y_predict, gen_test_file_name) data_utils.drawProgressBar(utt_index + 1, test_file_number)