예제 #1
0
def maybe_assert_bernoulli_param_correctness(
    is_init, validate_args, probs, logits):
  """Return assertions for `Bernoulli`-type distributions."""
  if is_init:
    x, name = (probs, 'probs') if logits is None else (logits, 'logits')
    if not dtype_util.is_floating(x.dtype):
      raise TypeError(
          'Argument `{}` must having floating type.'.format(name))

  if not validate_args:
    return []

  assertions = []

  if probs is not None:
    if is_init != tensor_util.is_ref(probs):
      probs = tf.convert_to_tensor(probs)
      one = tf.constant(1., probs.dtype)
      assertions += [
          assert_util.assert_non_negative(
              probs, message='probs has components less than 0.'),
          assert_util.assert_less_equal(
              probs, one, message='probs has components greater than 1.')
      ]

  return assertions
예제 #2
0
  def __init__(self,
               rate=None,
               log_rate=None,
               interpolate_nondiscrete=True,
               validate_args=False,
               allow_nan_stats=True,
               name='Poisson'):
    """Initialize a batch of Poisson distributions.

    Args:
      rate: Floating point tensor, the rate parameter. `rate` must be positive.
        Must specify exactly one of `rate` and `log_rate`.
      log_rate: Floating point tensor, the log of the rate parameter.
        Must specify exactly one of `rate` and `log_rate`.
      interpolate_nondiscrete: Python `bool`. When `False`,
        `log_prob` returns `-inf` (and `prob` returns `0`) for non-integer
        inputs. When `True`, `log_prob` evaluates the continuous function
        `k * log_rate - lgamma(k+1) - rate`, which matches the Poisson pmf
        at integer arguments `k` (note that this function is not itself
        a normalized probability log-density).
        Default value: `True`.
      validate_args: Python `bool`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
        Default value: `True`.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if none or both of `rate`, `log_rate` are specified.
      TypeError: if `rate` is not a float-type.
      TypeError: if `log_rate` is not a float-type.
    """
    parameters = dict(locals())
    if (rate is None) == (log_rate is None):
      raise ValueError('Must specify exactly one of `rate` and `log_rate`.')
    with tf.name_scope(name) as name:
      dtype = dtype_util.common_dtype([rate, log_rate], dtype_hint=tf.float32)
      if not dtype_util.is_floating(dtype):
        raise TypeError('[log_]rate.dtype ({}) is a not a float-type.'.format(
            dtype_util.name(dtype)))
      self._rate = tensor_util.convert_nonref_to_tensor(
          rate, name='rate', dtype=dtype)
      self._log_rate = tensor_util.convert_nonref_to_tensor(
          log_rate, name='log_rate', dtype=dtype)

      self._interpolate_nondiscrete = interpolate_nondiscrete
      super(Poisson, self).__init__(
          dtype=dtype,
          reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          parameters=parameters,
          name=name)
예제 #3
0
def maybe_assert_categorical_param_correctness(is_init, validate_args, probs,
                                               logits):
    """Return assertions for `Categorical`-type distributions."""
    assertions = []

    # In init, we can always build shape and dtype checks because
    # we assume shape doesn't change for Variable backed args.
    if is_init:
        x, name = (probs, 'probs') if logits is None else (logits, 'logits')

        if not dtype_util.is_floating(x.dtype):
            raise TypeError(
                'Argument `{}` must having floating type.'.format(name))

        msg = 'Argument `{}` must have rank at least 1.'.format(name)
        ndims = tensorshape_util.rank(x.shape)
        if ndims is not None:
            if ndims < 1:
                raise ValueError(msg)
        elif validate_args:
            x = tf.convert_to_tensor(x)
            probs = x if logits is None else None  # Retain tensor conversion.
            logits = x if probs is None else None
            assertions.append(
                assert_util.assert_rank_at_least(x, 1, message=msg))

    if not validate_args:
        assert not assertions  # Should never happen.
        return []

    if logits is not None:
        if is_init != tensor_util.is_ref(logits):
            logits = tf.convert_to_tensor(logits)
            assertions.extend(
                distribution_util.assert_categorical_event_shape(logits))

    if probs is not None:
        if is_init != tensor_util.is_ref(probs):
            probs = tf.convert_to_tensor(probs)
            assertions.extend([
                assert_util.assert_non_negative(probs),
                assert_util.assert_near(
                    tf.reduce_sum(probs, axis=-1),
                    np.array(1, dtype=dtype_util.as_numpy_dtype(probs.dtype)),
                    message='Argument `probs` must sum to 1.')
            ])
            assertions.extend(
                distribution_util.assert_categorical_event_shape(probs))

    return assertions
예제 #4
0
 def _prob(self, event):
   samples = tf.convert_to_tensor(self._samples)
   num_samples = self._compute_num_samples(samples)
   event = tf.convert_to_tensor(event, name='event', dtype=self.dtype)
   event, samples = _broadcast_event_and_samples(event, samples,
                                                 event_ndims=self._event_ndims)
   prob = tf.reduce_sum(
       tf.cast(
           tf.reduce_all(
               tf.equal(samples, event), axis=tf.range(-self._event_ndims, 0)),
           dtype=tf.int32),
       axis=-1) / num_samples
   if dtype_util.is_floating(self.dtype):
     prob = tf.cast(prob, self.dtype)
   return prob
예제 #5
0
def _maybe_validate_matrix(a, validate_args):
    """Checks that input is a `float` matrix."""
    assertions = []
    if not dtype_util.is_floating(a.dtype):
        raise TypeError('Input `a` must have `float`-like `dtype` '
                        '(saw {}).'.format(dtype_util.name(a.dtype)))
    if tensorshape_util.rank(a.shape) is not None:
        if tensorshape_util.rank(a.shape) < 2:
            raise ValueError('Input `a` must have at least 2 dimensions '
                             '(saw: {}).'.format(tensorshape_util.rank(
                                 a.shape)))
    elif validate_args:
        assertions.append(
            assert_util.assert_rank_at_least(
                a,
                rank=2,
                message='Input `a` must have at least 2 dimensions.'))
    return assertions
예제 #6
0
  def _parameter_control_dependencies(self, is_init):
    """Checks the validity of the concentration parameter."""
    assertions = []

    # In init, we can always build shape and dtype checks because
    # we assume shape doesn't change for Variable backed args.
    if is_init:
      if not dtype_util.is_floating(self.concentration.dtype):
        raise TypeError('Argument `concentration` must be float type.')

      msg = 'Argument `concentration` must have rank at least 1.'
      ndims = tensorshape_util.rank(self.concentration.shape)
      if ndims is not None:
        if ndims < 1:
          raise ValueError(msg)
      elif self.validate_args:
        assertions.append(assert_util.assert_rank_at_least(
            self.concentration, 1, message=msg))

      msg = 'Argument `concentration` must have `event_size` at least 2.'
      event_size = tf.compat.dimension_value(self.concentration.shape[-1])
      if event_size is not None:
        if event_size < 2:
          raise ValueError(msg)
      elif self.validate_args:
        assertions.append(assert_util.assert_less(
            1,
            tf.shape(self.concentration)[-1],
            message=msg))

    if not self.validate_args:
      assert not assertions  # Should never happen.
      return []

    if is_init != tensor_util.is_ref(self.concentration):
      assertions.append(assert_util.assert_positive(
          self.concentration,
          message='Argument `concentration` must be positive.'))

    return assertions
def maybe_assert_negative_binomial_param_correctness(is_init, validate_args,
                                                     total_count, probs,
                                                     logits):
    """Return assertions for `NegativeBinomial`-type distributions."""
    if is_init:
        x, name = (probs, 'probs') if logits is None else (logits, 'logits')
        if not dtype_util.is_floating(x.dtype):
            raise TypeError(
                'Argument `{}` must having floating type.'.format(name))

    if not validate_args:
        return []

    assertions = []
    if is_init != tensor_util.is_ref(total_count):
        total_count = tf.convert_to_tensor(total_count)
        assertions.extend([
            assert_util.assert_non_negative(
                total_count,
                message='`total_count` has components less than 0.'),
            distribution_util.assert_integer_form(
                total_count,
                message='`total_count` has fractional components.')
        ])
    if probs is not None:
        if is_init != tensor_util.is_ref(probs):
            probs = tf.convert_to_tensor(probs)
            one = tf.constant(1., probs.dtype)
            assertions.extend([
                assert_util.assert_non_negative(
                    probs, message='`probs` has components less than 0.'),
                assert_util.assert_less_equal(
                    probs,
                    one,
                    message='`probs` has components greater than 1.')
            ])

    return assertions
예제 #8
0
def _broadcast_cat_event_and_params(event, params, base_dtype):
    """Broadcasts the event or distribution parameters."""
    if dtype_util.is_integer(event.dtype):
        pass
    elif dtype_util.is_floating(event.dtype):
        # When `validate_args=True` we've already ensured int/float casting
        # is closed.
        event = tf.cast(event, dtype=tf.int32)
    else:
        raise TypeError('`value` should have integer `dtype` or '
                        '`self.dtype` ({})'.format(base_dtype))
    shape_known_statically = (
        tensorshape_util.rank(params.shape) is not None
        and tensorshape_util.is_fully_defined(params.shape[:-1])
        and tensorshape_util.is_fully_defined(event.shape))
    if not shape_known_statically or params.shape[:-1] != event.shape:
        params = params * tf.ones_like(event[..., tf.newaxis],
                                       dtype=params.dtype)
        params_shape = tf.shape(params)[:-1]
        event = event * tf.ones(params_shape, dtype=event.dtype)
        if tensorshape_util.rank(params.shape) is not None:
            tensorshape_util.set_shape(event, params.shape[:-1])

    return event, params
예제 #9
0
    def _parameter_control_dependencies(self, is_init):
        assertions = []

        logits = self._logits
        probs = self._probs
        param, name = (probs, 'probs') if logits is None else (logits,
                                                               'logits')

        # In init, we can always build shape and dtype checks because
        # we assume shape doesn't change for Variable backed args.
        if is_init:
            if not dtype_util.is_floating(param.dtype):
                raise TypeError(
                    'Argument `{}` must having floating type.'.format(name))

            msg = 'Argument `{}` must have rank at least 1.'.format(name)
            shape_static = tensorshape_util.dims(param.shape)
            if shape_static is not None:
                if len(shape_static) < 1:
                    raise ValueError(msg)
            elif self.validate_args:
                param = tf.convert_to_tensor(param)
                assertions.append(
                    assert_util.assert_rank_at_least(param, 1, message=msg))

            msg1 = 'Argument `{}` must have final dimension >= 1.'.format(name)
            msg2 = 'Argument `{}` must have final dimension <= {}.'.format(
                name, tf.int32.max)
            event_size = shape_static[-1] if shape_static is not None else None
            if event_size is not None:
                if event_size < 1:
                    raise ValueError(msg1)
                if event_size > tf.int32.max:
                    raise ValueError(msg2)
            elif self.validate_args:
                param = tf.convert_to_tensor(param)
                assertions.append(
                    assert_util.assert_greater_equal(tf.shape(param)[-1:],
                                                     1,
                                                     message=msg1))
                # NOTE: For now, we leave out a runtime assertion that
                # `tf.shape(param)[-1] <= tf.int32.max`.  An earlier `tf.shape` call
                # will fail before we get to this point.

        if not self.validate_args:
            assert not assertions  # Should never happen.
            return []

        if is_init != tensor_util.is_ref(self.temperature):
            assertions.append(assert_util.assert_positive(self.temperature))

        if probs is not None:
            probs = param  # reuse tensor conversion from above
            if is_init != tensor_util.is_ref(probs):
                probs = tf.convert_to_tensor(probs)
                one = tf.ones([], dtype=probs.dtype)
                assertions.extend([
                    assert_util.assert_non_negative(probs),
                    assert_util.assert_less_equal(probs, one),
                    assert_util.assert_near(
                        tf.reduce_sum(probs, axis=-1),
                        one,
                        message='Argument `probs` must sum to 1.'),
                ])

        return assertions
    def __init__(self,
                 loc=None,
                 scale=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name='MultivariateNormalLinearOperator'):
        """Construct Multivariate Normal distribution on `R^k`.

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this.

    Recall that `covariance = scale @ scale.T`.

    Additional leading dimensions (if any) will index batches.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale: Instance of `LinearOperator` with same `dtype` as `loc` and shape
        `[B1, ..., Bb, k, k]`.
      validate_args: Python `bool`, default `False`. Whether to validate input
        with asserts. If `validate_args` is `False`, and the inputs are
        invalid, correct behavior is not guaranteed.
      allow_nan_stats: Python `bool`, default `True`. If `False`, raise an
        exception if a statistic (e.g. mean/mode/etc...) is undefined for any
        batch member If `True`, batch members with valid parameters leading to
        undefined statistics will return NaN for this statistic.
      name: The name to give Ops created by the initializer.

    Raises:
      ValueError: if `scale` is unspecified.
      TypeError: if not `scale.dtype.is_floating`
    """
        parameters = dict(locals())
        if scale is None:
            raise ValueError('Missing required `scale` parameter.')
        if not dtype_util.is_floating(scale.dtype):
            raise TypeError(
                '`scale` parameter must have floating-point dtype.')

        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([loc, scale],
                                            dtype_hint=tf.float32)
            # Since expand_dims doesn't preserve constant-ness, we obtain the
            # non-dynamic value if possible.
            loc = tensor_util.convert_nonref_to_tensor(loc,
                                                       dtype=dtype,
                                                       name='loc')
            batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale(
                loc, scale)

        super(MultivariateNormalLinearOperator, self).__init__(
            distribution=normal.Normal(loc=tf.zeros([], dtype=dtype),
                                       scale=tf.ones([], dtype=dtype)),
            bijector=affine_linear_operator_bijector.AffineLinearOperator(
                shift=loc, scale=scale, validate_args=validate_args),
            batch_shape=batch_shape,
            event_shape=event_shape,
            validate_args=validate_args,
            name=name)
        self._parameters = parameters
예제 #11
0
    def __init__(self,
                 df,
                 scale_operator,
                 input_output_cholesky=False,
                 validate_args=False,
                 allow_nan_stats=True,
                 name=None):
        """Construct Wishart distributions.

    Args:
      df: `float` or `double` tensor, the degrees of freedom of the
        distribution(s). `df` must be greater than or equal to `k`.
      scale_operator: `float` or `double` instance of `LinearOperator`.
      input_output_cholesky: Python `bool`. If `True`, functions whose input or
        output have the semantics of samples assume inputs are in Cholesky form
        and return outputs in Cholesky form. In particular, if this flag is
        `True`, input to `log_prob` is presumed of Cholesky form and output from
        `sample`, `mean`, and `mode` are of Cholesky form.  Setting this
        argument to `True` is purely a computational optimization and does not
        change the underlying distribution; for instance, `mean` returns the
        Cholesky of the mean, not the mean of Cholesky factors. The `variance`
        and `stddev` methods are unaffected by this flag.
        Default value: `False` (i.e., input/output does not have Cholesky
        semantics).
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      TypeError: if scale is not floating-type
      TypeError: if scale.dtype != df.dtype
      ValueError: if df < k, where scale operator event shape is
        `(k, k)`
    """
        parameters = dict(locals())
        self._input_output_cholesky = input_output_cholesky
        with tf.name_scope(name) as name:
            with tf.name_scope("init"):
                if not dtype_util.is_floating(scale_operator.dtype):
                    raise TypeError(
                        "scale_operator.dtype=%s is not a floating-point type"
                        % scale_operator.dtype)
                if not scale_operator.is_square:
                    print(scale_operator.to_dense().eval())
                    raise ValueError("scale_operator must be square.")

                self._scale_operator = scale_operator
                self._df = tf.convert_to_tensor(df,
                                                dtype=scale_operator.dtype,
                                                name="df")
                dtype_util.assert_same_float_dtype(
                    [self._df, self._scale_operator])
                if tf.compat.dimension_value(
                        self._scale_operator.shape[-1]) is None:
                    self._dimension = tf.cast(
                        self._scale_operator.domain_dimension_tensor(),
                        dtype=self._scale_operator.dtype,
                        name="dimension")
                else:
                    self._dimension = tf.convert_to_tensor(
                        tf.compat.dimension_value(
                            self._scale_operator.shape[-1]),
                        dtype=self._scale_operator.dtype,
                        name="dimension")
                df_val = tf.get_static_value(self._df)
                dim_val = tf.get_static_value(self._dimension)
                if df_val is not None and dim_val is not None:
                    df_val = np.asarray(df_val)
                    if not df_val.shape:
                        df_val = [df_val]
                    if np.any(df_val < dim_val):
                        raise ValueError(
                            "Degrees of freedom (df = %s) cannot be less than "
                            "dimension of scale matrix (scale.dimension = %s)"
                            % (df_val, dim_val))
                elif validate_args:
                    assertions = assert_util.assert_less_equal(
                        self._dimension,
                        self._df,
                        message=("Degrees of freedom (df = %s) cannot be "
                                 "less than dimension of scale matrix "
                                 "(scale.dimension = %s)" %
                                 (self._dimension, self._df)))
                    self._df = distribution_util.with_dependencies(
                        [assertions], self._df)
        super(_WishartLinearOperator, self).__init__(
            dtype=self._scale_operator.dtype,
            validate_args=validate_args,
            allow_nan_stats=allow_nan_stats,
            reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
            parameters=parameters,
            name=name)
예제 #12
0
    def __init__(self,
                 outcomes,
                 logits=None,
                 probs=None,
                 rtol=None,
                 atol=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name='FiniteDiscrete'):
        """Construct a finite discrete contribution.

    Args:
      outcomes: A 1-D floating or integer `Tensor`, representing a list of
        possible outcomes in strictly ascending order.
      logits: A floating N-D `Tensor`, `N >= 1`, representing the log
        probabilities of a set of FiniteDiscrete distributions. The first `N -
        1` dimensions index into a batch of independent distributions and the
        last dimension represents a vector of logits for each discrete value.
        Only one of `logits` or `probs` should be passed in.
      probs: A floating  N-D `Tensor`, `N >= 1`, representing the probabilities
        of a set of FiniteDiscrete distributions. The first `N - 1` dimensions
        index into a batch of independent distributions and the last dimension
        represents a vector of probabilities for each discrete value. Only one
        of `logits` or `probs` should be passed in.
      rtol: `Tensor` with same `dtype` as `outcomes`. The relative tolerance for
        floating number comparison. Only effective when `outcomes` is a floating
        `Tensor`. Default is `10 * eps`.
      atol: `Tensor` with same `dtype` as `outcomes`. The absolute tolerance for
        floating number comparison. Only effective when `outcomes` is a floating
        `Tensor`. Default is `10 * eps`.
      validate_args:  Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may render incorrect outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value '`NaN`' to indicate the
        result is undefined. When `False`, an exception is raised if one or more
        of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:
            outcomes_dtype = dtype_util.common_dtype([outcomes],
                                                     dtype_hint=tf.float32)
            self._outcomes = tensor_util.convert_nonref_to_tensor(
                outcomes, dtype_hint=outcomes_dtype, name='outcomes')

            if dtype_util.is_floating(self._outcomes.dtype):
                eps = np.finfo(dtype_util.as_numpy_dtype(outcomes_dtype)).eps
                self._rtol = 10 * eps if rtol is None else rtol
                self._atol = 10 * eps if atol is None else atol
            else:
                self._rtol = None
                self._atol = None

            self._categorical = categorical.Categorical(
                logits=logits,
                probs=probs,
                dtype=tf.int32,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats)
        super(FiniteDiscrete, self).__init__(
            dtype=self._outcomes.dtype,
            reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
            validate_args=validate_args,
            allow_nan_stats=allow_nan_stats,
            parameters=parameters,
            name=name)
예제 #13
0
    def __init__(self,
                 power,
                 dtype=tf.int32,
                 interpolate_nondiscrete=True,
                 sample_maximum_iterations=100,
                 validate_args=False,
                 allow_nan_stats=False,
                 name='Zipf'):
        """Initialize a batch of Zipf distributions.

    Args:
      power: `Float` like `Tensor` representing the power parameter. Must be
        strictly greater than `1`.
      dtype: The `dtype` of `Tensor` returned by `sample`.
        Default value: `tf.int32`.
      interpolate_nondiscrete: Python `bool`. When `False`, `log_prob` returns
        `-inf` (and `prob` returns `0`) for non-integer inputs. When `True`,
        `log_prob` evaluates the continuous function `-power log(k) -
        log(zeta(power))` , which matches the Zipf pmf at integer arguments `k`
        (note that this function is not itself a normalized probability
        log-density).
        Default value: `True`.
      sample_maximum_iterations: Maximum number of iterations of allowable
        iterations in `sample`. When `validate_args=True`, samples which fail to
        reach convergence (subject to this cap) are masked out with
        `self.dtype.min` or `nan` depending on `self.dtype.is_integer`.
        Default value: `100`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or more
        of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: `'Zipf'`.

    Raises:
      TypeError: if `power` is not `float` like.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:
            self._power = tensor_util.convert_nonref_to_tensor(
                power,
                name='power',
                dtype=dtype_util.common_dtype([power], dtype_hint=tf.float32))
            if (not dtype_util.is_floating(self._power.dtype)
                    or dtype_util.base_equal(self._power.dtype, tf.float16)):
                raise TypeError(
                    'power.dtype ({}) is not a supported `float` type.'.format(
                        dtype_util.name(self._power.dtype)))
            self._interpolate_nondiscrete = interpolate_nondiscrete
            self._sample_maximum_iterations = sample_maximum_iterations
            super(Zipf, self).__init__(
                dtype=dtype,
                reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                parameters=parameters,
                name=name)
예제 #14
0
    def _sample_n(self, num_samples, seed=None, name=None):
        """Returns a Tensor of samples from an LKJ distribution.

    Args:
      num_samples: Python `int`. The number of samples to draw.
      seed: Python integer seed for RNG
      name: Python `str` name prefixed to Ops created by this function.

    Returns:
      samples: A Tensor of correlation matrices with shape `[n, B, D, D]`,
        where `B` is the shape of the `concentration` parameter, and `D`
        is the `dimension`.

    Raises:
      ValueError: If `dimension` is negative.
    """
        if self.dimension < 0:
            raise ValueError(
                'Cannot sample negative-dimension correlation matrices.')
        # Notation below: B is the batch shape, i.e., tf.shape(concentration)
        seed = SeedStream(seed, 'sample_lkj')
        with tf.name_scope('sample_lkj' or name):
            concentration = tf.convert_to_tensor(self.concentration)
            if not dtype_util.is_floating(concentration.dtype):
                raise TypeError(
                    'The concentration argument should have floating type, not '
                    '{}'.format(dtype_util.name(concentration.dtype)))

            concentration = _replicate(num_samples, concentration)
            concentration_shape = tf.shape(concentration)
            if self.dimension <= 1:
                # For any dimension <= 1, there is only one possible correlation matrix.
                shape = tf.concat(
                    [concentration_shape, [self.dimension, self.dimension]],
                    axis=0)
                return tf.ones(shape=shape, dtype=concentration.dtype)
            beta_conc = concentration + (self.dimension - 2.) / 2.
            beta_dist = beta.Beta(concentration1=beta_conc,
                                  concentration0=beta_conc)

            # Note that the sampler below deviates from [1], by doing the sampling in
            # cholesky space. This does not change the fundamental logic of the
            # sampler, but does speed up the sampling.

            # This is the correlation coefficient between the first two dimensions.
            # This is also `r` in reference [1].
            corr12 = 2. * beta_dist.sample(seed=seed()) - 1.

            # Below we construct the Cholesky of the initial 2x2 correlation matrix,
            # which is of the form:
            # [[1, 0], [r, sqrt(1 - r**2)]], where r is the correlation between the
            # first two dimensions.
            # This is the top-left corner of the cholesky of the final sample.
            first_row = tf.concat([
                tf.ones_like(corr12)[..., tf.newaxis],
                tf.zeros_like(corr12)[..., tf.newaxis]
            ],
                                  axis=-1)
            second_row = tf.concat([
                corr12[..., tf.newaxis],
                tf.sqrt(1 - corr12**2)[..., tf.newaxis]
            ],
                                   axis=-1)

            chol_result = tf.concat([
                first_row[..., tf.newaxis, :], second_row[..., tf.newaxis, :]
            ],
                                    axis=-2)

            for n in range(2, self.dimension):
                # Loop invariant: on entry, result has shape B + [n, n]
                beta_conc = beta_conc - 0.5
                # norm is y in reference [1].
                norm = beta.Beta(concentration1=n / 2.,
                                 concentration0=beta_conc).sample(seed=seed())
                # distance shape: B + [1] for broadcast
                distance = tf.sqrt(norm)[..., tf.newaxis]
                # direction is u in reference [1].
                # direction shape: B + [n]
                direction = _uniform_unit_norm(n, concentration_shape,
                                               concentration.dtype, seed)
                # raw_correlation is w in reference [1].
                raw_correlation = distance * direction  # shape: B + [n]

                # This is the next row in the cholesky of the result,
                # which differs from the construction in reference [1].
                # In the reference, the new row `z` = chol_result @ raw_correlation^T
                # = C @ raw_correlation^T (where as short hand we use C = chol_result).
                # We prove that the below equation is the right row to add to the
                # cholesky, by showing equality with reference [1].
                # Let S be the sample constructed so far, and let `z` be as in
                # reference [1]. Then at this iteration, the new sample S' will be
                # [[S z^T]
                #  [z 1]]
                # In our case we have the cholesky decomposition factor C, so
                # we want our new row x (same size as z) to satisfy:
                #  [[S z^T]  [[C 0]    [[C^T  x^T]         [[CC^T  Cx^T]
                #   [z 1]] =  [x k]]    [0     k]]  =       [xC^t   xx^T + k**2]]
                # Since C @ raw_correlation^T = z = C @ x^T, and C is invertible,
                # we have that x = raw_correlation. Also 1 = xx^T + k**2, so k
                # = sqrt(1 - xx^T) = sqrt(1 - |raw_correlation|**2) = sqrt(1 -
                # distance**2).
                new_row = tf.concat(
                    [raw_correlation,
                     tf.sqrt(1. - norm[..., tf.newaxis])],
                    axis=-1)

                # Finally add this new row, by growing the cholesky of the result.
                chol_result = tf.concat([
                    chol_result,
                    tf.zeros_like(chol_result[..., 0][..., tf.newaxis])
                ],
                                        axis=-1)

                chol_result = tf.concat(
                    [chol_result, new_row[..., tf.newaxis, :]], axis=-2)

            if self.input_output_cholesky:
                return chol_result

            result = tf.matmul(chol_result, chol_result, transpose_b=True)
            # The diagonal for a correlation matrix should always be ones. Due to
            # numerical instability the matmul might not achieve that, so manually set
            # these to ones.
            result = tf.linalg.set_diag(
                result, tf.ones(shape=tf.shape(result)[:-1],
                                dtype=result.dtype))
            # This sampling algorithm can produce near-PSD matrices on which standard
            # algorithms such as `tf.cholesky` or `tf.linalg.self_adjoint_eigvals`
            # fail. Specifically, as documented in b/116828694, around 2% of trials
            # of 900,000 5x5 matrices (distributed according to 9 different
            # concentration parameter values) contained at least one matrix on which
            # the Cholesky decomposition failed.
            return result