def test_logprob(self): y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8]) ssm = LocalLinearTrendStateSpaceModel( num_timesteps=5, level_scale=0.5, slope_scale=0.5, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=self._build_placeholder([1., 1.]))) lp = ssm.log_prob(y[..., np.newaxis]) expected_lp = -5.801624298095703 self.assertAllClose(self.evaluate(lp), expected_lp)
def test_matches_locallineartrend(self): """SemiLocalLinearTrend with trivial AR process is a LocalLinearTrend.""" level_scale = self._build_placeholder(0.5) slope_scale = self._build_placeholder(0.5) initial_level = self._build_placeholder(3.) initial_slope = self._build_placeholder(-2.) num_timesteps = 5 y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8]) semilocal_ssm = SemiLocalLinearTrendStateSpaceModel( num_timesteps=num_timesteps, level_scale=level_scale, slope_scale=slope_scale, slope_mean=self._build_placeholder(0.), autoregressive_coef=self._build_placeholder(1.), initial_state_prior=tfd.MultivariateNormalDiag( loc=[initial_level, initial_slope], scale_diag=self._build_placeholder([1., 1.]))) local_ssm = LocalLinearTrendStateSpaceModel( num_timesteps=num_timesteps, level_scale=level_scale, slope_scale=slope_scale, initial_state_prior=tfd.MultivariateNormalDiag( loc=[initial_level, initial_slope], scale_diag=self._build_placeholder([1., 1.]))) semilocal_lp = semilocal_ssm.log_prob(y[:, tf.newaxis]) local_lp = local_ssm.log_prob(y[:, tf.newaxis]) self.assertAllClose(self.evaluate(semilocal_lp), self.evaluate(local_lp)) semilocal_mean = semilocal_ssm.mean() local_mean = local_ssm.mean() self.assertAllClose(self.evaluate(semilocal_mean), self.evaluate(local_mean)) semilocal_variance = semilocal_ssm.variance() local_variance = local_ssm.variance() self.assertAllClose(self.evaluate(semilocal_variance), self.evaluate(local_variance))
def test_identity(self): # Test that an additive SSM with a single component defines the same # distribution as the component model. y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8]) local_ssm = LocalLinearTrendStateSpaceModel( num_timesteps=5, level_scale=0.3, slope_scale=0.6, observation_noise_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=self._build_placeholder([1., 1.]))) additive_ssm = AdditiveStateSpaceModel([local_ssm]) local_lp = local_ssm.log_prob(y[:, np.newaxis]) additive_lp = additive_ssm.log_prob(y[:, np.newaxis]) self.assertAllClose(self.evaluate(local_lp), self.evaluate(additive_lp))
def test_sum_of_local_linear_trends(self): # We know analytically that the sum of two local linear trends is # another local linear trend, with means and variances scaled # accordingly, so the additive model should match this behavior. level_scale = 0.5 slope_scale = 1.1 initial_level = 3. initial_slope = -2. observation_noise_scale = 0. num_timesteps = 5 y = self._build_placeholder([1.0, 2.5, 4.3, 6.1, 7.8]) # Combine two local linear trend models, one a full model, the other # with just a moving mean (zero slope). local_ssm = LocalLinearTrendStateSpaceModel( num_timesteps=num_timesteps, level_scale=level_scale, slope_scale=slope_scale, initial_state_prior=tfd.MultivariateNormalDiag( loc=self._build_placeholder([initial_level, initial_slope]), scale_diag=self._build_placeholder([1., 1.]))) second_level_scale = 0.3 second_initial_level = 1.1 moving_level_ssm = LocalLinearTrendStateSpaceModel( num_timesteps=num_timesteps, level_scale=second_level_scale, slope_scale=0., initial_state_prior=tfd.MultivariateNormalDiag( loc=self._build_placeholder([second_initial_level, 0.]), scale_diag=self._build_placeholder([1., 0.]))) additive_ssm = AdditiveStateSpaceModel( [local_ssm, moving_level_ssm], observation_noise_scale=observation_noise_scale) # Build the analytical sum of the two processes. target_ssm = LocalLinearTrendStateSpaceModel( num_timesteps=num_timesteps, level_scale=np.float32( np.sqrt(level_scale**2 + second_level_scale**2)), slope_scale=np.float32(slope_scale), observation_noise_scale=observation_noise_scale, initial_state_prior=tfd.MultivariateNormalDiag( loc=self._build_placeholder( [initial_level + second_initial_level, initial_slope + 0.]), scale_diag=self._build_placeholder(np.sqrt([2., 1.])))) # Test that both models behave equivalently. additive_mean = additive_ssm.mean() target_mean = target_ssm.mean() self.assertAllClose(self.evaluate(additive_mean), self.evaluate(target_mean)) additive_variance = additive_ssm.variance() target_variance = target_ssm.variance() self.assertAllClose(self.evaluate(additive_variance), self.evaluate(target_variance)) additive_lp = additive_ssm.log_prob(y[:, np.newaxis]) target_lp = target_ssm.log_prob(y[:, np.newaxis]) self.assertAllClose(self.evaluate(additive_lp), self.evaluate(target_lp))