예제 #1
0
def compute_Semantics_2c():
    """Tensor decomposition on actor,movie,year and put actor into non-overlapping bins of latent semantics"""
    print "\n\n"
    actor_dict = {}
    act = MovieActor.objects.values_list('actorid', flat=True).distinct()
    actor_count = act.count()

    for n, each in enumerate(act):
        actor_dict[n] = each

    year_dict = {}
    yr = MlMovies.objects.values_list('year', flat=True).distinct()
    year_count = yr.count()
    for n, each in enumerate(yr):
        year_dict[n] = each

    movie_dict = {}
    mov = MlMovies.objects.values_list('movieid', flat=True).distinct()
    movie_count = mov.count()
    for n, each in enumerate(mov):
        movie_dict[n] = each

    actorobjs = ImdbActorInfo.objects.values_list('actorid', 'name')
    actor_mapping = {x[0]: x[1] for x in actorobjs}

    movieobjs = MlMovies.objects.values_list('movieid', 'moviename')
    movie_mapping = {x[0]: x[1] for x in movieobjs}

    # print(actor_count)
    # print(year_count)
    # print(movie_count)

    # print actor_dict
    # print year_dict
    # print movie_dict

    # with open('tag_space_matrix/actor_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(actor_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])
    # with open('tag_space_matrix/year_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(year_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])
    # with open('tag_space_matrix/movie_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(movie_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])

    results = [[[0] * movie_count for i in range(year_count)]
               for i in range(actor_count)]
    # print(len(results))
    # print(len(results[0]))
    # print(len(results[0][0]))

    whole_table = MovieActor.objects.select_related('movieid').all()
    print("#################")
    # print(whole_table.count())
    inv_a = {v: k for k, v in actor_dict.iteritems()}
    inv_m = {v: k for k, v in movie_dict.iteritems()}
    inv_y = {v: k for k, v in year_dict.iteritems()}
    for row in whole_table:
        results[inv_a[row.actorid.actorid]][inv_y[row.movieid.year]][inv_m[
            row.movieid.movieid]] = 1.0

    tensor = T.tensor(np.array(results))
    print(tensor)
    factors = tensorly.decomposition.parafac(tensor, 5)

    #ACTOR SEMANTICS
    print(factors[0])
    print("AFTER")
    #col_sums = factors[0].asnumpy().sum(axis=0)
    x = factors[0]
    factors[0] = (x.asnumpy() - x.asnumpy().min(0)) / x.asnumpy().ptp(0)
    print(factors[0])
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    # with open('tag_space_matrix/actor_dict.csv', mode='r') as infile:
    # 	reader = csv.reader(infile)
    # 	actor_dict = {rows[0]:rows[1] for rows in reader}

    for i in range(len(factors[0])):
        row = factors[0][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row)
        if num == 0:
            ls_1.append([actor_mapping[actor_dict[i]], val])
        if num == 1:
            ls_2.append([actor_mapping[actor_dict[i]], val])
        if num == 2:
            ls_3.append([actor_mapping[actor_dict[i]], val])
        if num == 3:
            ls_4.append([actor_mapping[actor_dict[i]], val])
        if num == 4:
            ls_5.append([actor_mapping[actor_dict[i]], val])
        # for row in query:
        #  ls_5.append([row['name'],val])

    print("LATENT SEMANTIC 1")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)

    # MOVIE SEMANTICS
    x = factors[2]
    factors[2] = (x.asnumpy() - x.asnumpy().min(0)) / x.asnumpy().ptp(0)
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    # with open('tag_space_matrix/movie_dict.csv', mode='r') as infile:
    # 	reader = csv.reader(infile)
    # 	actor_dict = {rows[0]:rows[1] for rows in reader}
    for i in range(len(factors[2])):
        row = factors[2][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row)
        if num == 0:
            ls_1.append([movie_mapping[movie_dict[i]], val])
        if num == 1:
            ls_2.append([movie_mapping[movie_dict[i]], val])
        if num == 2:
            ls_3.append([movie_mapping[movie_dict[i]], val])
        if num == 3:
            ls_4.append([movie_mapping[movie_dict[i]], val])
        if num == 4:
            ls_5.append([movie_mapping[movie_dict[i]], val])

    print("LATENT SEMANTIC 1")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)

    # YEAR SEMANTICS
    x = factors[1]
    factors[1] = (x.asnumpy() - x.asnumpy().min(0)) / x.asnumpy().ptp(0)
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    for i in range(len(factors[1])):
        row = factors[1][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row)
        if num == 0:
            ls_1.append([year_dict[i], val])
        if num == 1:
            ls_2.append([year_dict[i], val])
        if num == 2:
            ls_3.append([year_dict[i], val])
        if num == 3:
            ls_4.append([year_dict[i], val])
        if num == 4:
            ls_5.append([year_dict[i], val])

    print("LATENT SEMANTIC 1")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)
예제 #2
0
def compute_Semantics_1c(userid):
    """Tensor decomposition on tag,movie,user and put actor into non-overlapping bins of latent semantics"""
    print "\n\n"
    user_limit = 80000
    usr_obj = MlUsers.objects.filter(userid__gte=user_limit).distinct()
    mov_obj = MlMovies.objects.filter(year__gte=2004).distinct()
    setMovies = MlRatings.objects.filter(movieid__in=mov_obj,
                                         userid=userid).values_list("movieid")
    setMovies = list(set([mov[0] for mov in setMovies]))

    tag_dict = {}
    taglist = MlRatings.objects.values_list('rating', flat=True).distinct()
    tag_count = taglist.count()
    #tag_count = 6
    for n, each in enumerate(taglist):
        tag_dict[n] = each

    user_dict = {}
    #user = MlRatings.objects.values_list('userid', flat=True).distinct()[:6000]
    user = MlRatings.objects.filter(userid__in=usr_obj).values_list(
        'userid', flat=True).distinct()
    user_count = user.count()
    for n, each in enumerate(user):
        user_dict[n] = each

    movie_dict = {}

    mov = MlRatings.objects.filter(movieid__in=mov_obj,
                                   userid__in=usr_obj).values_list(
                                       'movieid', flat=True).distinct()
    movie_count = mov.count()
    for n, each in enumerate(mov):
        movie_dict[n] = each

    # tagobjs = GenomeTags.objects.values_list('tagid','tag')
    # tag_mapping = {x[0]:x[1] for x in tagobjs}
    # #tags = list(tagobjs)

    movieobjs = MlMovies.objects.filter(year__gte=2004).values_list(
        'movieid', 'moviename')
    movie_mapping = {x[0]: x[1] for x in movieobjs}
    print(tag_count)
    print(movie_count)
    print(user_count)
    results = [[[0] * tag_count for i in range(movie_count)]
               for i in range(user_count)]
    #whole_table = MlRatings.objects.all()[:2000]
    whole_table = MlRatings.objects.filter(movieid__in=mov_obj,
                                           userid__in=usr_obj)
    inv_u = {v: k for k, v in user_dict.iteritems()}
    #print(inv_u)
    inv_m = {v: k for k, v in movie_dict.iteritems()}
    inv_t = {v: k for k, v in tag_dict.iteritems()}
    index = inv_u[userid]
    #print("whole_table")
    #print(whole_table.count())
    counter = 0
    for row in whole_table:
        #print(counter)
        counter += 1
        # print(inv_u[row.userid.userid],inv_m[row.movieid.movieid],inv_t[row.rating])

        results[inv_u[row.userid.userid]][inv_m[row.movieid.movieid]][inv_t[
            row.rating]] = 1.0 * row.norm_weight

    tensor = T.tensor(np.array(results))
    factors = tensorly.decomposition.parafac(tensor, 3)
    recons = tensorly.kruskal_to_tensor(factors)
    #recons = results
    #tested for (25,88)g , (30,123)b, (150,497)okish,
    #index = 25
    movie_score = {}
    user_movie_list = []
    print("user: "******"movie: "+str(movie))
        for rating in range(len(recons[index][movie])):
            #print("rating: "+str(rating))
            if recons[index][movie][rating].asscalar() > 0.0:
                if movie in movie_score:
                    movie_score[movie] += float(rating + 1) * (float(
                        recons[index][movie][rating].asscalar()))
                else:
                    movie_score[movie] = float(rating + 1) * (float(
                        recons[index][movie][rating].asscalar()))
        if movie not in movie_score:
            movie_score[movie] = 0.0
        #print("Score:")
        #print(movie_score[movie])
        if movie_dict[movie] not in setMovies:
            user_movie_list.append((movie_dict[movie], movie_score[movie]))
        #else:
        #user_movie_list.append((movie_dict[movie],0.0))

    breakFlag = True
    user_movie_dict = {}
    for k, v in user_movie_list:
        #print(k,v)
        user_movie_dict[k] = v
    print("Watched Movies:")
    rows = MlRatings.objects.all().filter(userid=user_dict[index])
    for row in rows:
        print(row.movieid.movieid, row.movieid.moviename, row.movieid.genres)
    return user_movie_dict
    user_movie_list = list(user_movie_dict.items())
    result = list(reversed(sorted(user_movie_list, key=lambda x: x[1])))
    till_which = 5
    #result = [item for item in list3 if item not in list(setMovies)]
    print("Watched Movies:")
    rows = MlRatings.objects.all().filter(userid=user_dict[index])
    for row in rows:
        print(row.movieid.movieid, row.movieid.moviename, row.movieid.genres)
    print("Recommended:")
    for a, b in result[:till_which]:
        mov = MlMovies.objects.get(movieid=a)
        print(a, mov.moviename, mov.genres, b)
    feedback = {}

    for ea, s in result[:till_which]:
        print("Enter feedback for: " + str(ea) + "...Hit X to exit")
        feed = int(raw_input())
        if feed == 'X':
            breakFlag = False
        feedback[ea] = feed

    movie_vector = getRelevance(feedback)
    for k, v in movie_vector.items():
        if v == 0.0:
            v = 0.0001
        user_movie_dict[k] *= v
    user_movie_list = list(user_movie_dict.items())
예제 #3
0
def compute_Semantics_2d():
    """Tensor decomposition on actor,movie,year and put actor into non-overlapping bins of latent semantics"""
    print "\n\n"
    tag_dict = {}
    taglist = Task7.objects.values_list('tagid', flat=True).distinct()
    tag_count = taglist.count()

    for n, each in enumerate(taglist):
        tag_dict[n] = each

    rating_dict = {}
    rate = Task7.objects.values_list('rating', flat=True).distinct()
    rating_count = rate.count()
    #	rating_count = 6
    for n, each in enumerate(rate):
        rating_dict[n] = each

    movie_dict = {}
    mov = Task7.objects.values_list('movieid', flat=True).distinct()
    movie_count = mov.count()
    for n, each in enumerate(mov):
        movie_dict[n] = each

    tagobjs = GenomeTags.objects.values_list('tagid', 'tag')
    tag_mapping = {x[0]: x[1] for x in tagobjs}
    #tags = list(tagobjs)

    movieobjs = MlMovies.objects.values_list('movieid', 'moviename')
    movie_mapping = {x[0]: x[1] for x in movieobjs}

    # print(tag_count)
    # print(rating_count)
    # print(movie_count)

    # print tag_dict
    # print rating_dict
    # print movie_dict

    # with open('tag_space_matrix/actor_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(actor_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])
    # with open('tag_space_matrix/year_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(year_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])
    # with open('tag_space_matrix/movie_dict.csv', 'wb') as csv_file:
    #     writer = csv.writer(csv_file)
    #     for key, value in sorted(movie_dict.items(),key=operator.itemgetter(1)):
    #        writer.writerow([value, key])
    tags = Task7.objects.values_list('tagid', 'movieid', 'rating')
    results = [[[0] * rating_count for i in range(movie_count)]
               for i in range(tag_count)]
    #print(len(results))
    #print(len(results[0]))
    #print(len(results[0][0]))

    #break
    inv_t = {v: k for k, v in tag_dict.iteritems()}
    inv_m = {v: k for k, v in movie_dict.iteritems()}
    inv_r = {v: k for k, v in rating_dict.iteritems()}

    for row in tags:
        #print(inv_t[row[0]])
        #row1 = MlRatings.objects.filter(userid=row1.userid.userid)
        results[inv_t[row[0]]][inv_m[row[1]]][inv_r[row[2]]] = 1.0

    tensor = T.tensor(np.array(results))
    #print(tensor)
    factors = tensorly.decomposition.parafac(tensor, 5)

    #ACTOR SEMANTICS
    #print(factors)
    #tucker
    #factors[0]=factors[1]
    #factors[1]=factors[2]
    #factors[2]=factors[3]
    #print("AFTER")
    #col_sums = factors[0].asnumpy().sum(axis=0)
    x = factors[0]
    #factors[0] = (x.asnumpy() - x.asnumpy().min(0)) / x.asnumpy().ptp(0)
    factors[0] = (x.asnumpy() - x.asnumpy().min(0)) / (x.asnumpy().max(0) -
                                                       x.asnumpy().min(0))
    #print(factors[0])
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    # with open('tag_space_matrix/actor_dict.csv', mode='r') as infile:
    # 	reader = csv.reader(infile)
    # 	actor_dict = {rows[0]:rows[1] for rows in reader}

    for i in range(len(factors[0])):
        row = factors[0][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row) / sum(row)
        if num == 0:
            ls_1.append([tag_mapping[tag_dict[i]], val])
        if num == 1:
            ls_2.append([tag_mapping[tag_dict[i]], val])
        if num == 2:
            ls_3.append([tag_mapping[tag_dict[i]], val])
        if num == 3:
            ls_4.append([tag_mapping[tag_dict[i]], val])
        if num == 4:
            ls_5.append([tag_mapping[tag_dict[i]], val])
        # for row in query:
        #  ls_5.append([row['name'],val])
    print("\nTag Bins")
    print("LATENT SEMANTIC 1:")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2:")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3:")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4:")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5:")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)

    # MOVIE SEMANTICS
    x = factors[1]
    #factors[1] = (x.asnumpy() - x.asnumpy().min(0)) / x.asnumpy().ptp(0)
    factors[1] = (x.asnumpy() - x.asnumpy().min(0)) / (x.asnumpy().max(0) -
                                                       x.asnumpy().min(0))
    #print(factors[1])
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    # with open('tag_space_matrix/movie_dict.csv', mode='r') as infile:
    # 	reader = csv.reader(infile)
    # 	actor_dict = {rows[0]:rows[1] for rows in reader}
    for i in range(len(factors[1])):
        row = factors[1][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row) / sum(row)
        if num == 0:
            ls_1.append([movie_mapping[movie_dict[i]], val])
        if num == 1:
            ls_2.append([movie_mapping[movie_dict[i]], val])
        if num == 2:
            ls_3.append([movie_mapping[movie_dict[i]], val])
        if num == 3:
            ls_4.append([movie_mapping[movie_dict[i]], val])
        if num == 4:
            ls_5.append([movie_mapping[movie_dict[i]], val])

    print("\nMovie Bins")
    print("LATENT SEMANTIC 1")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)

    # YEAR SEMANTICS
    x = factors[2]
    factors[2] = (x.asnumpy() - x.asnumpy().min(0)) / (x.asnumpy().max(0) -
                                                       x.asnumpy().min(0))
    ls_1 = []
    ls_2 = []
    ls_3 = []
    ls_4 = []
    ls_5 = []
    #print(len(factors[2]))
    for i in range(len(factors[2])):
        row = factors[2][i]
        #print(row)
        num = np.ndarray.argmax(row)
        val = max(row) / sum(row)
        if num == 0:
            ls_1.append([rating_dict[i], val])
        if num == 1:
            ls_2.append([rating_dict[i], val])
        if num == 2:
            ls_3.append([rating_dict[i], val])
        if num == 3:
            ls_4.append([rating_dict[i], val])
        if num == 4:
            ls_5.append([rating_dict[i], val])

    print("\nRating Bins")
    print("LATENT SEMANTIC 1")
    for i in reversed(sorted(ls_1, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 2")
    for i in reversed(sorted(ls_2, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 3")
    for i in reversed(sorted(ls_3, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 4")
    for i in reversed(sorted(ls_4, key=lambda x: x[1])):
        print(i)

    print("LATENT SEMANTIC 5")
    for i in reversed(sorted(ls_5, key=lambda x: x[1])):
        print(i)
예제 #4
0
from tensorly.datasets.synthetic import gen_image
from tensorly.random import check_random_state
from tensorly.regression.kruskal_regression import KruskalRegressor
import tensorly.backend as T

# Parameter of the experiment
image_height = 25
image_width = 25
# shape of the images
patterns = ['rectangle', 'swiss', 'circle']
# ranks to test
ranks = [1, 2, 3, 4, 5]

# Generate random samples
rng = check_random_state(1)
X = T.tensor(rng.normal(size=(1000, image_height, image_width), loc=0,
                        scale=1))

# Paramters of the plot, deduced from the data
n_rows = len(patterns)
n_columns = len(ranks) + 1
# Plot the three images
fig = plt.figure()

for i, pattern in enumerate(patterns):

    # Generate the original image
    weight_img = gen_image(region=pattern,
                           image_height=image_height,
                           image_width=image_width)
    weight_img = T.tensor(weight_img)
예제 #5
0
# -*- coding: utf-8 -*-
"""
Basic tensor operations
=======================

Example on how to use :mod:`tensorly.base` to perform basic tensor operations.

"""

import matplotlib.pyplot as plt
from tensorly.base import unfold, fold
import numpy as np
import tensorly.backend as T

###########################################################################
# A tensor is simply a numpy array
tensor = T.tensor(np.arange(24).reshape((3, 4, 2)))
print('* original tensor:\n{}'.format(tensor))

###########################################################################
# Unfolding a tensor is easy
for mode in range(tensor.ndim):
    print('* mode-{} unfolding:\n{}'.format(mode, unfold(tensor, mode)))

###########################################################################
# Re-folding the tensor is as easy:
for mode in range(tensor.ndim):
    unfolding = unfold(tensor, mode)
    folded = fold(unfolding, mode, tensor.shape)
    T.assert_array_equal(folded, tensor)
예제 #6
0
def decomp_plot(edge_len=25,
                iterations=[1, 2, 3, 4],
                ranks=[1, 5, 25, 50, 125, 130, 150, 200],
                decomp='CP'):
    #Params
    print(ranks)

    #Generate random samples
    rng = check_random_state(7)
    X = T.tensor(rng.normal(size=(1000, edge_len, edge_len), loc=0, scale=1))

    #For plotting
    n_rows = len(iterations)
    n_columns = len(ranks) + 1

    fig = plt.figure()

    for i, _ in enumerate(iterations):
        #Generate tensor
        weight_img = X[i * edge_len:(i + 1) * edge_len, :, :]

        ax = fig.add_subplot(n_rows, n_columns, i * n_columns + 1)

        #Plot image corresponding to 3-D Tensor
        ax.imshow(T.to_numpy(np.sum(weight_img, axis=0)),
                  cmap=plt.cm.OrRd,
                  interpolation='nearest')
        ax.set_axis_off()
        if i == 0:
            ax.set_title('Original')

        for j, rank in enumerate(ranks):
            #Tensor decomposition, image_edge x rank (25x1, 25x5, 25x25 ...)

            if decomp == 'CP':
                #CP decomposition
                components = parafac(weight_img, rank=rank)

                ax = fig.add_subplot(n_rows, n_columns, i * n_columns + j + 2)
                # Aggregate the factors for visualization
                simg = np.sum(components[k] for k in range(len(components)))
                ax.imshow(T.to_numpy(simg),
                          cmap=plt.cm.OrRd,
                          interpolation='nearest')
                ax.text(.5,
                        2.0,
                        '{:.2f}'.format(
                            tensor_distance(kruskal_to_tensor(components),
                                            weight_img)),
                        color='r')
                # ax.set_autoscaley_on(False)
                ax.set_axis_off()
            else:
                #Tucker decomposition
                components, f = tucker(weight_img, ranks=[3, 25, rank])
                #print(components.shape)

                ax = fig.add_subplot(n_rows, n_columns, i * n_columns + j + 2)
                # Aggregate the factors for visualization
                simg = np.sum(components[k] for k in range(len(components)))
                ax.imshow(T.to_numpy(simg),
                          cmap=plt.cm.OrRd,
                          interpolation='nearest')
                ax.text(.5,
                        2.0,
                        '{:.2f}'.format(
                            tensor_distance(kruskal_to_tensor(components),
                                            weight_img)),
                        color='r')
                # ax.set_autoscaley_on(False)
                ax.set_axis_off()

            if i == 0:
                ax.set_title('\n{}'.format(rank))

    plt.suptitle('Tensor Decompositions')
    plt.show()
예제 #7
0
from scipy.misc import face, imresize
from tensorly.decomposition import non_negative_parafac
from tensorly.decomposition import non_negative_tucker
from tensorly.decomposition import tucker
from math import ceil

from tensorly.base import tensor_to_vec, partial_tensor_to_vec
from tensorly.datasets.synthetic import gen_image
from tensorly.random import check_random_state
from tensorly.regression.kruskal_regression import KruskalRegressor
import tensorly.backend as T
import time

tl.set_backend('numpy')
rng = check_random_state(1)
X = T.tensor(rng.normal(size=(1000, 1000, 1000), loc=0, scale=1))
start_time = time.time()
core, tucker_factors = non_negative_tucker(X, rank=[10,10,10], init='svd', tol=10e-12, verbose=True, n_iter_max=2)
print("--- %s seconds ---" % (time.time() - start_time))

tl.set_backend('mxnet')
rng = check_random_state(1)
X = T.tensor(rng.normal(size=(1000, 1000, 1000), loc=0, scale=1))
start_time = time.time()
core, tucker_factors = non_negative_tucker(X, rank=[10,10,10], init='svd', tol=10e-12, verbose=True, n_iter_max=2)
print("--- %s seconds ---" % (time.time() - start_time))

tl.set_backend('pytorch')
rng = check_random_state(1)
X = T.tensor(rng.normal(size=(1000, 1000, 1000), loc=0, scale=1))
start_time = time.time()