예제 #1
0
def test_config(make_model):
  # Disable the redefined-outer-name violation in this function
  # pylint: disable=redefined-outer-name
  model = make_model

  expected_num_parameters = model.layers[0].count_params()

  # Serialize model and use config to create new layer
  model_config = model.get_config()
  layer_config = model_config['layers'][0]['config']
  if 'mpo' in model.layers[0].name:
    new_model = DenseMPO.from_config(layer_config)
  elif 'decomp' in model.layers[0].name:
    new_model = DenseDecomp.from_config(layer_config)
  elif 'condenser' in model.layers[0].name:
    new_model = DenseCondenser.from_config(layer_config)
  elif 'expander' in model.layers[0].name:
    new_model = DenseExpander.from_config(layer_config)
  elif 'entangler' in model.layers[0].name:
    new_model = DenseEntangler.from_config(layer_config)

  # Build the layer so we can count params below
  new_model.build(layer_config['batch_input_shape'])

  # Check that original layer had same num params as layer built from config
  np.testing.assert_equal(expected_num_parameters, new_model.count_params())
예제 #2
0
def test_entangler_asymmetric_num_parameters_output_shape(
        num_legs, num_levels, leg_dims):
    leg_dim, out_leg_dim = leg_dims
    data_shape = (leg_dim**num_legs, )
    model = Sequential()
    model.add(
        DenseEntangler(out_leg_dim**num_legs,
                       num_legs=num_legs,
                       num_levels=num_levels,
                       use_bias=True,
                       activation='relu',
                       input_shape=data_shape))

    primary = leg_dim
    secondary = out_leg_dim
    if leg_dim > out_leg_dim:
        primary, secondary = secondary, primary

    expected_num_parameters = (num_levels - 1) * (num_legs - 1) * (
        primary**4
    ) + (num_legs - 2) * primary**3 * secondary + primary**2 * secondary**2 + (
        out_leg_dim**num_legs)

    np.testing.assert_equal(expected_num_parameters, model.count_params())
    data = np.random.randint(10, size=(10, data_shape[0]))
    out = model(data)
    np.testing.assert_equal(out.shape, (data.shape[0], out_leg_dim**num_legs))
예제 #3
0
def make_model(dummy_data, request):
  # Disable the redefined-outer-name violation in this function
  # pylint: disable=redefined-outer-name
  data, _ = dummy_data

  if request.param == 'DenseMPO':
    model = Sequential()
    model.add(
        DenseMPO(data.shape[1],
                 num_nodes=int(math.log(int(data.shape[1]), 8)),
                 bond_dim=8,
                 use_bias=True,
                 activation='relu',
                 input_shape=(data.shape[1],)))
    model.add(Dense(1, activation='sigmoid'))
  elif request.param == 'DenseDecomp':
    model = Sequential()
    model.add(
        DenseDecomp(512,
                    decomp_size=128,
                    use_bias=True,
                    activation='relu',
                    input_shape=(data.shape[1],)))
    model.add(Dense(1, activation='sigmoid'))
  elif request.param == 'DenseCondenser':
    model = Sequential()
    model.add(
        DenseCondenser(exp_base=2,
                       num_nodes=3,
                       use_bias=True,
                       activation='relu',
                       input_shape=(data.shape[1],)))
    model.add(Dense(1, activation='sigmoid'))
  elif request.param == 'DenseExpander':
    model = Sequential()
    model.add(
        DenseExpander(exp_base=2,
                      num_nodes=3,
                      use_bias=True,
                      activation='relu',
                      input_shape=(data.shape[-1],)))
    model.add(Dense(1, activation='sigmoid'))
  elif request.param == 'DenseEntangler':
    num_legs = 3
    leg_dim = round(data.shape[-1]**(1. / num_legs))
    assert leg_dim**num_legs == data.shape[-1]

    model = Sequential()
    model.add(
        DenseEntangler(leg_dim**num_legs,
                       num_legs=num_legs,
                       num_levels=3,
                       use_bias=True,
                       activation='relu',
                       input_shape=(data.shape[1],)))
    model.add(Dense(1, activation='sigmoid'))

  return model
예제 #4
0
def test_entangler_num_parameters(dummy_data):
  # Disable the redefined-outer-name violation in this function
  # pylint: disable=redefined-outer-name
  data, _ = dummy_data

  num_legs = 3
  num_levels = 3
  leg_dim = round(data.shape[-1]**(1. / num_legs))
  assert leg_dim**num_legs == data.shape[-1]

  model = Sequential()
  model.add(
      DenseEntangler(leg_dim**num_legs,
                     num_legs=num_legs,
                     num_levels=num_levels,
                     use_bias=True,
                     activation='relu',
                     input_shape=(data.shape[1],)))

  # num_params = entangler_node_params + bias_params
  expected_num_parameters = num_levels * (leg_dim**4) + leg_dim**num_legs

  np.testing.assert_equal(expected_num_parameters, model.count_params())