예제 #1
0
 def test_fit(self):
     """Test function fit."""
     data = np.random.rand(100, 1000)
     p = EventRelatedPac()
     pha = p.filter(256, data, 'phase')
     amp = p.filter(256, data, 'amplitude')
     p.fit(pha, amp, method='circular')
     p.fit(pha, amp, method='gc')
예제 #2
0
    def test_functional_erpac(self):
        """Test function test_functional_pac."""
        # erpac simultation
        n_epochs, n_times, sf, edges = 400, 1000, 512., 50
        x, times = pac_signals_wavelet(f_pha=10,
                                       f_amp=100,
                                       n_epochs=n_epochs,
                                       noise=.1,
                                       n_times=n_times,
                                       sf=sf)
        times = times[edges:-edges]
        # phase / amplitude extraction (single time)
        p = EventRelatedPac(f_pha=[8, 12],
                            f_amp=(30, 200, 5, 5),
                            dcomplex='wavelet',
                            width=12)
        kw = dict(n_jobs=1, edges=edges)
        phases = p.filter(sf, x, ftype='phase', **kw)
        amplitudes = p.filter(sf, x, ftype='amplitude', **kw)
        n_amp = len(p.yvec)
        # generate a normal distribution
        gt = np.zeros((n_amp, n_times - 2 * edges))
        b_amp = np.abs(p.yvec.reshape(-1, 1) - np.array([[80, 120]])).argmin(0)
        gt[b_amp[0]:b_amp[1] + 1, :] = True

        plt.figure(figsize=(16, 5))
        plt.subplot(131)
        p.pacplot(gt, times, p.yvec, title='Ground truth', cmap='magma')

        for n_meth, meth in enumerate(['circular', 'gc']):
            # compute erpac + p-values
            erpac = p.fit(phases,
                          amplitudes,
                          method=meth,
                          mcp='bonferroni',
                          n_perm=30).squeeze()
            pvalues = p.pvalues.squeeze()
            # find everywhere erpac is significant + compare to ground truth
            is_signi = pvalues < .05
            erpac[~is_signi] = np.nan
            # computes accuracy
            acc = 100 * (is_signi == gt).sum() / (n_amp * n_times)
            assert acc > 80.
            # plot the result
            title = f"Method={p.method}\nAccuracy={np.around(acc, 2)}%"
            plt.subplot(1, 3, n_meth + 2)
            p.pacplot(erpac, times, p.yvec, title=title)
        plt.tight_layout()
        plt.show()
예제 #3
0
 def test_fit(self):
     """Test function fit."""
     data = np.random.rand(100, 1000)
     p = EventRelatedPac()
     pha = p.filter(256, data, 'phase')
     amp = p.filter(256, data, 'amplitude')
     p.fit(pha, amp, method='circular')
     p.fit(pha, amp, method='gc')
     p.fit(pha, amp, method='gc', n_perm=2)
     p.fit(pha, amp, method='gc', smooth=5)
     p.surrogates, p.pvalues
예제 #4
0
# extract phases and amplitudes
pha = p.filter(sf, x, ftype='phase')
amp = p.filter(sf, x, ftype='amplitude')

###############################################################################
# Compute the ERPAC using the two implemented methods and plot it
###############################################################################

# implemented ERPAC methods
methods = ['circular', 'gc']

plt.figure(figsize=(16, 8))
for n_m, m in enumerate(methods):
    # compute the erpac
    erpac = p.fit(pha, amp, method=m, smooth=100).squeeze()

    # plot
    plt.subplot(len(methods), 1, n_m + 1)
    p.pacplot(erpac,
              time,
              p.yvec,
              xlabel='Time (second)' * n_m,
              cmap='Spectral_r',
              ylabel='Amplitude frequency',
              title=p.method,
              cblabel='ERPAC',
              vmin=0.,
              rmaxis=True)
    plt.axvline(1., linestyle='--', color='w', linewidth=2)
예제 #5
0
# use :class:`tensorpac.EventRelatedPac.filter` method to extract phases and
# amplitudes

# define an ERPAC object
p = EventRelatedPac(f_pha=[9, 11], f_amp=(60, 140, 5, 3))

# extract phases and amplitudes
pha = p.filter(sf, x, ftype='phase', n_jobs=1)
amp = p.filter(sf, x, ftype='amplitude', n_jobs=1)

###############################################################################
# Compute the ERPAC using the two implemented methods and plot it
###############################################################################

# implemented ERPAC methods
methods = ['circular', 'gc']

plt.figure(figsize=(16, 8))
for n_m, m in enumerate(methods):
    # compute the erpac
    erpac = p.fit(pha, amp, method=m, smooth=100, n_jobs=-1).squeeze()

    # plot
    plt.subplot(len(methods), 1, n_m + 1)
    p.pacplot(erpac, time, p.yvec, xlabel='Time (second)' * n_m,
              cmap='Spectral_r', ylabel='Amplitude frequency', title=p.method,
              cblabel='ERPAC', vmin=0., rmaxis=True)
    plt.axvline(1., linestyle='--', color='w', linewidth=2)

p.show()
예제 #6
0
x1, tvec = pac_signals_wavelet(f_pha=10, f_amp=100, n_epochs=n_epochs, noise=2,
                               n_times=n_times, sf=sf)
x2 = np.random.rand(n_epochs, 1000)
x = np.concatenate((x1, x2), axis=1)
time = np.arange(x.shape[1]) / sf


p = EventRelatedPac(f_pha=[9, 11], f_amp='hres')
pha = p.filter(sf, x, ftype='phase', n_jobs=-1)
amp = p.filter(sf, x, ftype='amplitude', n_jobs=-1)

plt.figure(figsize=(14, 6))
for n_m, (method, nb) in enumerate(zip(['circular', 'gc'], ['A', 'B'])):
    # to be fair with the comparison between ERPAC and gcERPAC, the smoothing
    # parameter of the gcERPAC is turned off but results could look way better
    # if for example with add a `smooth=20`
    erpac = p.fit(pha, amp, method=method, n_jobs=-1).squeeze()
    plt.subplot(1, 2, n_m + 1)
    p.pacplot(erpac, time, p.yvec, xlabel='Time (second)', cmap=cfg["cmap"],
              ylabel='Frequency for amplitude (Hz)', title=p.method,
              vmin=0., rmaxis=True, fz_labels=20, fz_title=22, fz_cblabel=20)
    plt.axvline(1., linestyle='--', color='w', linewidth=2)
    if n_m == 1: plt.ylabel('')
    ax = plt.gca()
    ax.text(*tuple(cfg["nb_pos"]), nb, transform=ax.transAxes, **cfg["nb_cfg"])

plt.tight_layout()
plt.savefig(f"../figures/Fig5.png", dpi=300, bbox_inches='tight')

plt.show()
예제 #7
0
x1, tvec = pac_signals_wavelet(f_pha=10,
                               f_amp=100,
                               n_epochs=n_epochs,
                               noise=2,
                               n_times=n_times,
                               sf=sf)
x2 = np.random.rand(n_epochs, 1000)
x = np.concatenate((x1, x2), axis=1)
time = np.arange(x.shape[1]) / sf

p = EventRelatedPac(f_pha=[9, 11], f_amp=(60, 140, 5, 1))
pha = p.filter(sf, x, ftype='phase', n_jobs=1)
amp = p.filter(sf, x, ftype='amplitude', n_jobs=1)

plt.figure(figsize=(8, 6))
erpac = p.fit(pha, amp, method='circular', n_jobs=-1).squeeze()
p.pacplot(erpac,
          time,
          p.yvec,
          xlabel='Time (second)',
          cmap=cfg["cmap"],
          ylabel='Frequency for amplitude (Hz)',
          title='Event Related PAC',
          vmin=0.,
          rmaxis=True)
plt.axvline(1., linestyle='--', color='w', linewidth=2)

plt.tight_layout()
plt.savefig(f"{cfg['path']}/Fig5.png", dpi=300, bbox_inches='tight')

plt.show()
예제 #8
0
kw = dict(n_jobs=1, edges=edges)
phases = p.filter(sf, x, ftype='phase', **kw)
amplitudes = p.filter(sf, x, ftype='amplitude', **kw)
n_amp = len(p.yvec)
# generate a normal distribution
gt = np.zeros((n_amp, n_times - 2 * edges))
b_amp = np.abs(p.yvec.reshape(-1, 1) - np.array([[80, 120]])).argmin(0)
gt[b_amp[0]:b_amp[1] + 1, :] = True

plt.figure(figsize=(16, 5))
plt.subplot(131)
p.pacplot(gt, times, p.yvec, title='Ground truth', cmap='magma')

for n_meth, meth in enumerate(['circular', 'gc']):
    # compute erpac + p-values
    erpac = p.fit(phases, amplitudes, method=meth,
                  mcp='bonferroni', n_perm=30).squeeze()
    pvalues = p.pvalues.squeeze()
    # find everywhere erpac is significant + compare to ground truth
    is_signi = pvalues < .05
    erpac[~is_signi] = np.nan
    # computes accuracy
    acc = 100 * (is_signi == gt).sum() / (n_amp * n_times)
    assert acc > 80.
    # plot the result
    title = f"Method={p.method}\nAccuracy={np.around(acc, 2)}%"
    plt.subplot(1, 3, n_meth + 2)
    p.pacplot(erpac, times, p.yvec, title=title)
plt.tight_layout()

plt.savefig(f"../figures/r3_functional_erpac.png", dpi=300,
            bbox_inches='tight')