예제 #1
0
    return train, test


if __name__ == '__main__':
    logger.auto_set_dir()
    M = keras.models.Sequential()
    M.add(KL.Conv2D(32, 3, activation='relu', input_shape=[IMAGE_SIZE, IMAGE_SIZE, 1], padding='same'))
    M.add(KL.MaxPooling2D())
    M.add(KL.Conv2D(32, 3, activation='relu', padding='same'))
    M.add(KL.Conv2D(32, 3, activation='relu', padding='same'))
    M.add(KL.MaxPooling2D())
    M.add(KL.Conv2D(32, 3, padding='same', activation='relu'))
    M.add(KL.Flatten())
    M.add(KL.Dense(512, activation='relu', kernel_regularizer=keras.regularizers.l2(1e-5)))
    M.add(KL.Dropout(0.5))
    M.add(KL.Dense(10, activation=None, kernel_regularizer=keras.regularizers.l2(1e-5)))
    M.add(KL.Activation('softmax'))

    dataset_train, dataset_test = get_data()

    M = KerasModel(M, QueueInput(dataset_train))
    M.compile(
        optimizer=tf.train.AdamOptimizer(1e-3),
        loss='categorical_crossentropy',
        metrics=['accuracy']
    )
    M.fit(
        validation_data=dataset_test,
        steps_per_epoch=dataset_train.size(),
    )
예제 #2
0
        M.add(KL.Conv2D(32, 3, padding='same', activation='relu'))

        M.add(KL.Flatten())
        M.add(
            KL.Dense(512,
                     activation='relu',
                     kernel_regularizer=keras.regularizers.l2(1e-5)))
        M.add(KL.Dropout(0.5))
        M.add(
            KL.Dense(10,
                     activation=None,
                     kernel_regularizer=keras.regularizers.l2(1e-5)))
        M.add(KL.Activation('softmax'))
        return M

    dataset_train, dataset_test = get_data()

    M = KerasModel(model_func,
                   inputs_desc=[
                       InputDesc(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                 'images')
                   ],
                   targets_desc=[InputDesc(tf.float32, [None, 10], 'labels')],
                   input=QueueInput(dataset_train))
    M.compile(optimizer=tf.train.AdamOptimizer(1e-3),
              loss='categorical_crossentropy',
              metrics='categorical_accuracy')
    M.fit(validation_data=dataset_test,
          steps_per_epoch=dataset_train.size(),
          callbacks=[ModelSaver()])
예제 #3
0
        inputs_desc=[InputDesc(tf.uint8, [None, 224, 224, 3], 'images')],
        targets_desc=[InputDesc(tf.float32, [None, 1000], 'labels')],
        input=df_train,
        trainer=SyncMultiGPUTrainerReplicated(num_gpu))

    lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
    tf.summary.scalar('lr', lr)

    M.compile(optimizer=tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True),
              loss='categorical_crossentropy',
              metrics='categorical_accuracy')

    callbacks = [
        ModelSaver(),
        ScheduledHyperParamSetter('learning_rate', [(0, 0.1), (3, BASE_LR)],
                                  interp='linear'),  # warmup
        ScheduledHyperParamSetter('learning_rate', [(30, BASE_LR * 0.1),
                                                    (60, BASE_LR * 1e-2),
                                                    (85, BASE_LR * 1e-3)]),
        GPUUtilizationTracker()
    ]
    if not args.fake:
        callbacks.append(
            DataParallelInferenceRunner(df_val,
                                        ScalarStats(['categorical_accuracy']),
                                        num_gpu))

    M.fit(steps_per_epoch=100 if args.fake else 1281167 // TOTAL_BATCH_SIZE,
          max_epoch=100,
          callbacks=callbacks)
예제 #4
0
        M.add(KL.Conv2D(32, 3, activation='relu', padding='same'))
        M.add(KL.MaxPooling2D())
        M.add(KL.Conv2D(32, 3, padding='same', activation='relu'))

        M.add(KL.Flatten())
        M.add(KL.Dense(512, activation='relu', kernel_regularizer=keras.regularizers.l2(1e-5)))
        M.add(KL.Dropout(0.5))
        M.add(KL.Dense(10, activation=None, kernel_regularizer=keras.regularizers.l2(1e-5)))
        M.add(KL.Activation('softmax'))
        return M

    dataset_train, dataset_test = get_data()

    M = KerasModel(
        model_func,
        inputs_desc=[InputDesc(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 1], 'images')],
        targets_desc=[InputDesc(tf.float32, [None, 10], 'labels')],
        input=QueueInput(dataset_train))
    M.compile(
        optimizer=tf.train.AdamOptimizer(1e-3),
        loss='categorical_crossentropy',
        metrics='categorical_accuracy'
    )
    M.fit(
        validation_data=dataset_test,
        steps_per_epoch=dataset_train.size(),
        callbacks=[
            ModelSaver()
        ]
    )
                                   loss='categorical_crossentropy',
                                   metrics='categorical_accuracy')
        callbacks = [
            ModelSaver(checkpoint_dir=checkpoint_dir),
            # MinSaver('val-error-top1'),   ##backup the model with best validation error
            GPUUtilizationTracker(
            ),  ## record GPU utilizations during training
            ScheduledHyperParamSetter('learning_rate',
                                      [(0, min(START_LR, BASE_LR)),
                                       (10, BASE_LR * 1e-1),
                                       (60, BASE_LR * 1e-2),
                                       (90, BASE_LR * 1e-3),
                                       (100, BASE_LR * 1e-4)]),
            DataParallelInferenceRunner(
                val_set,
                ScalarStats(
                    ['categorical_accuracy', 'categorical_crossentropy']),
                num_GPU)  ##comuting classification error and log to monitors
        ]

        ######start training the model
        print('\nTraining the model on %d subjects and testing on %d \n' %
              (len(train_sid), len(val_sid)))
        sys.stdout.flush()
        ##model_test_GPU_new.fit(validation_data=val_set,steps_per_epoch=steps, max_epoch=nepoch, callbacks=[ModelSaver(checkpoint_dir='checkpoints/')] )
        model_test_GPU_new.fit(steps_per_epoch=steps,
                               max_epoch=nepoch,
                               callbacks=callbacks)

    sys.exit(0)
예제 #6
0
def train(checkpoint_dir,
          model_name,
          dataset,
          num_epochs,
          quant_type,
          batch_size_per_gpu,
          lr=None,
          post_quantize_only=False):
    train_data, test_data, (img_shape,
                            label_shape) = datasets.DATASETS[dataset]()

    num_gpus = max(gpu.get_num_gpu(), 1)
    effective_batch_size = batch_size_per_gpu * num_gpus
    train_data = BatchData(train_data, batch_size_per_gpu)
    test_data = BatchData(test_data, batch_size_per_gpu, remainder=True)
    steps_per_epoch = len(train_data) // num_gpus

    if lr:
        if isinstance(lr, str):
            lr = ast.literal_eval(lr)
        if isinstance(lr, float):
            lr_schedule = [(0, lr)]
        else:
            lr_schedule = lr
    else:
        lr_schedule = [(0, 0.005), (8, 0.1), (25, 0.005), (30, 0)]

    if num_epochs is None:
        num_epochs = lr_schedule[-1][0]
    if post_quantize_only:
        start_quantising_at_epoch = 0
    else:
        start_quantising_at_epoch = lr_schedule[-2][0] if len(
            lr_schedule) > 1 else max(0, num_epochs - 5)

    logger.info(f"Training with LR schedule: {str(lr_schedule)}")
    logger.info(f"Quantising at epoch {start_quantising_at_epoch}")

    # train_data = FakeData([(batch_size_per_gpu,) + img_shape, (batch_size_per_gpu, ) + label_shape])

    model_func, input_spec, output_spec = get_model_func(
        "train",
        model_name,
        quant_type,
        img_shape,
        num_classes=label_shape[0],
        quant_delay=steps_per_epoch * start_quantising_at_epoch)
    target_spec = [
        tf.TensorSpec(t.shape, t.dtype, name=t.name.split("/")[-1] + "_target")
        for t in output_spec
    ]
    model = KerasModel(get_model=model_func,
                       input_signature=input_spec,
                       target_signature=target_spec,
                       input=train_data,
                       trainer=SyncMultiGPUTrainerParameterServer(
                           num_gpus, ps_device='gpu'))

    lr = tf.get_variable('learning_rate',
                         initializer=lr_schedule[0][1],
                         trainable=False)
    tf.summary.scalar('learning_rate-summary', lr)
    model.compile(optimizer=tf.train.MomentumOptimizer(learning_rate=lr,
                                                       momentum=0.9),
                  loss="categorical_crossentropy",
                  metrics=["categorical_accuracy"])

    model.fit(steps_per_epoch=steps_per_epoch,
              max_epoch=num_epochs,
              callbacks=[
                  ModelSaver(max_to_keep=1, checkpoint_dir=checkpoint_dir),
                  DataParallelInferenceRunner(
                      test_data, ScalarStats(model._stats_to_inference),
                      num_gpus),
                  ScheduledHyperParamSetter('learning_rate',
                                            lr_schedule,
                                            interp="linear"),
                  StatMonitorParamSetter('learning_rate',
                                         'validation_categorical_accuracy',
                                         lambda x: x / 2,
                                         threshold=0.001,
                                         last_k=10,
                                         reverse=True)
              ],
              session_init=SaverRestore(checkpoint_dir + "/checkpoint")
              if post_quantize_only else None)
    lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
    tf.summary.scalar('lr', lr)

    M.compile(
        optimizer=tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True),
        loss='categorical_crossentropy',
        metrics='categorical_accuracy'
    )

    callbacks = [
        ModelSaver(),
        ScheduledHyperParamSetter(
            'learning_rate',
            [(0, 0.1), (3, BASE_LR)], interp='linear'),  # warmup
        ScheduledHyperParamSetter(
            'learning_rate',
            [(30, BASE_LR * 0.1), (60, BASE_LR * 1e-2), (85, BASE_LR * 1e-3)]),
        GPUUtilizationTracker()
    ]
    if not args.fake:
        callbacks.append(
            DataParallelInferenceRunner(
                df_val, ScalarStats(['categorical_accuracy']), nr_gpu))

    M.fit(
        steps_per_epoch=100 if args.fake else 1281167 // TOTAL_BATCH_SIZE,
        max_epoch=100,
        callbacks=callbacks
    )