예제 #1
0
    def build_iter(self):

        ds = DataFromGenerator(self.generator)
        ds = BatchData(ds, self.batch_size)
        ds = MultiProcessPrefetchData(ds, self.prefetch_size, self.process_num)
        ds.reset_state()
        ds = ds.get_data()
        return ds
예제 #2
0
    def build_iter(self):

        map_func = partial(self._map_func, is_training=self.training_flag)
        ds = DataFromGenerator(self.generator)
        ds = BatchData(ds, self.num_gpu * self.batch_size)
        ds = MultiProcessPrefetchData(ds, self.prefetch_size, self.process_num)
        ds.reset_state()
        ds = ds.get_data()
        return ds
예제 #3
0
    def build_iter(self):

        ds = DataFromGenerator(self.generator)
        ds = RepeatedData(ds, -1)
        ds = BatchData(ds, self.batch_size)
        if not cfg.TRAIN.vis:
            ds = PrefetchDataZMQ(ds, self.process_num)
        ds.reset_state()
        ds = ds.get_data()
        return ds
예제 #4
0
    def build_iter(self, ):

        ds = DataFromGenerator(self.generator)

        if cfg.DATA.mutiscale and self.training_flag:
            ds = MutiScaleBatcher(ds,
                                  self.num_gpu * self.batch_size,
                                  scale_range=cfg.DATA.scales,
                                  input_size=(cfg.DATA.hin, cfg.DATA.win))
        else:
            ds = MutiScaleBatcher(ds,
                                  self.num_gpu * self.batch_size,
                                  input_size=(cfg.DATA.hin, cfg.DATA.win))

        ds = MultiProcessPrefetchData(ds, self.prefetch_size, self.process_num)
        ds.reset_state()
        ds = ds.get_data()
        return ds