def get_PennTreeBank(data_dir=None): if data_dir is None: data_dir = get_dataset_path('ptb_data') if not os.path.isfile(os.path.join(data_dir, 'ptb.train.txt')): download(TRAIN_URL, data_dir) download(VALID_URL, data_dir) download(TEST_URL, data_dir) word_to_id = tfreader._build_vocab(os.path.join(data_dir, 'ptb.train.txt')) data3 = [np.asarray(tfreader._file_to_word_ids(os.path.join(data_dir, fname), word_to_id)) for fname in ['ptb.train.txt', 'ptb.valid.txt', 'ptb.test.txt']] return data3, word_to_id
def get_PennTreeBank(data_dir=None): if data_dir is None: data_dir = get_dataset_path('ptb_data') if not os.path.isfile(os.path.join(data_dir, 'ptb.train.txt')): download(TRAIN_URL, data_dir) download(VALID_URL, data_dir) download(TEST_URL, data_dir) word_to_id = tfreader._build_vocab(os.path.join(data_dir, 'ptb.train.txt')) data3 = [ np.asarray( tfreader._file_to_word_ids(os.path.join(data_dir, fname), word_to_id)) for fname in ['ptb.train.txt', 'ptb.valid.txt', 'ptb.test.txt'] ] return data3, word_to_id
int(r.class_id), int(r.class_id) ), "bbox": xyxy_to_xywh([round(float(x), 4) for x in r.box]), "score": round(float(r.score), 3), } for r in results ] evaluator.add(res) if evaluator.cache_exists: break evaluator.save() download( "http://models.tensorpack.com/FasterRCNN/COCO-MaskRCNN-R50FPN2x.npz", "./", expect_size=165362754) with backup_cfg(): evaluate_rcnn( "Mask R-CNN (ResNet-50-FPN, 2x)", "1703.06870", [], "COCO-MaskRCNN-R50FPN2x.npz", ) download( "http://models.tensorpack.com/FasterRCNN/COCO-MaskRCNN-R50FPN2xGN.npz", "./", expect_size=167363872) with backup_cfg(): evaluate_rcnn( "Mask R-CNN (ResNet-50-FPN, GroupNorm)", "1803.08494",
{ "image_id": img_id, "category_id": category_id_to_coco_id.get( int(r.class_id), int(r.class_id) ), "bbox": xyxy_to_xywh([round(float(x), 4) for x in r.box]), "score": round(float(r.score), 3), } for r in results ] evaluator.add(res) if evaluator.cache_exists: break evaluator.save() download( "http://models.tensorpack.com/FasterRCNN/COCO-MaskRCNN-R101FPN9xGNCasAugScratch.npz", "./", expect_size=355680386) evaluate_rcnn( "Mask R-CNN (ResNet-101-FPN, GN, Cascade)", "1811.08883", """ FPN.CASCADE=True BACKBONE.RESNET_NUM_BLOCKS=[3,4,23,3] FPN.NORM=GN BACKBONE.NORM=GN FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head FPN.MRCNN_HEAD_FUNC=maskrcnn_up4conv_gn_head""".split(), "COCO-MaskRCNN-R101FPN9xGNCasAugScratch.npz", )
def _download_caffe_meta(self): fpath = download(CAFFE_ILSVRC12_URL[0], self.dir, expect_size=CAFFE_ILSVRC12_URL[1]) tarfile.open(fpath, 'r:gz').extractall(self.dir)