def predict(self, features: Dict) -> Dict: if not self.infer_ctx: self.infer_ctx = InferContext(self.predictor_host, self.protocol, self.model_name, self.model_version, http_headers='', verbose=True) batch_size = 1 unique_ids = np.int32([1]) segment_ids = features["segment_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] result = self.infer_ctx.run( { 'unique_ids': (unique_ids, ), 'segment_ids': (segment_ids, ), 'input_ids': (input_ids, ), 'input_mask': (input_mask, ) }, { 'end_logits': InferContext.ResultFormat.RAW, 'start_logits': InferContext.ResultFormat.RAW }, batch_size) return result
def infer(self, input_batch): ctx = InferContext(f"localhost:{TRT_GRPC_PORT}", ProtocolType.from_str('gRPC'), 'ResNet50', -1, False, 0, False) ctx.run({self.input_name: input_batch}, {self.output_name: (InferContext.ResultFormat.CLASS, 1)}, self.batch_size)
def close(self): """Delete any held correlation_ids, and then close the context. Any future calls to object will result in an Error. """ for id in self.correlation_ids(): self.delete(id) # make it work with both 2 and 3 as InferContext does not # inherit from object, so super in broken in 2. InferContext.close(self)
def __init__(self, url, model_name='cidmgr', model_version=-1, verbose=False, correlation_id=1, streaming=False): protocol = ProtocolType.from_str("grpc") self._id_registry = set() # make it work with both 2 and 3 as InferContext does not # inherit from object, so super in broken in 2. InferContext.__init__(self, url, protocol, model_name, model_version, verbose, correlation_id, streaming)
def __init__(self, url, model_name, model_version=None, verbose=False, cidmgr_context=None, streaming=False): if not cidmgr_context: cidmgr_context = CIDMgrContext(url, verbose=verbose) self.cidmgr=cidmgr_context protocol = ProtocolType.from_str("grpc") correlation_id = self.cidmgr.new() # make it work with both 2 and 3 as InferContext does not # inherit from object, so super in broken in 2. InferContext.__init__(self, url, protocol, model_name, model_version, verbose, correlation_id, streaming)
def infer(flags, input_name, output_name, batch): """ Perform inference non-asynchronosly @param flags: The server flags @param input_name: The name of the input field @param output_name: The name of the output field @param batch: The batch of images to send @return: The elapsed time for perfroming an inference request """ inference_context = InferContext( (flags.url + ":" + str(flags.port)), flags.protocol, flags.model_name, flags.model_version, False, 0, flags.streaming, []) start_time = time() inference_context.run( {input_name: batch}, {output_name: (InferContext.ResultFormat.CLASS, flags.classes)}, flags.batch_size) end_time = time() return end_time - start_time
def run_client(): """ Ask a question of context on TRTIS. :param context: str :param question: str :param question_id: int :return: """ tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative) eval_features = [] def append_feature(feature): eval_features.append(feature) convert_examples_to_features(examples=eval_examples[0:], tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) protocol_str = 'grpc' # http or grpc url = FLAGS.trtis_server_url verbose = True model_name = FLAGS.trtis_model_name model_version = FLAGS.trtis_model_version batch_size = FLAGS.predict_batch_size protocol = ProtocolType.from_str(protocol_str) # or 'grpc' ctx = InferContext(url, protocol, model_name, model_version, verbose) channel = grpc.insecure_channel(url) stub = grpc_service_pb2_grpc.GRPCServiceStub(channel) prof_request = grpc_service_pb2.server__status__pb2.model__config__pb2.ModelConfig( ) prof_response = stub.Profile(prof_request) status_ctx = ServerStatusContext(url, protocol, model_name=model_name, verbose=verbose) model_config_pb2.ModelConfig() status_result = status_ctx.get_server_status() outstanding = {} max_outstanding = 20 sent_prog = tqdm.tqdm(desc="Send Requests", total=len(eval_features)) recv_prog = tqdm.tqdm(desc="Recv Requests", total=len(eval_features)) def process_outstanding(do_wait): if (len(outstanding) == 0): return ready_id = ctx.get_ready_async_request(do_wait) if (ready_id is None): return # If we are here, we got an id result = ctx.get_async_run_results(ready_id, False) stop = time.time() if (result is None): raise ValueError( "Context returned null for async id marked as done") outResult = outstanding.pop(ready_id) time_list.append(stop - outResult.start_time) batch_count = len(outResult.inputs[label_id_key]) for i in range(batch_count): unique_id = int(outResult.inputs[label_id_key][i][0]) start_logits = [float(x) for x in result["start_logits"][i].flat] end_logits = [float(x) for x in result["end_logits"][i].flat] all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) recv_prog.update(n=batch_count) all_results = [] time_list = [] print("Starting Sending Requests....\n") all_results_start = time.time() for inputs_dict in batch(eval_features, batch_size): present_batch_size = len(inputs_dict[label_id_key]) outputs_dict = { 'start_logits': InferContext.ResultFormat.RAW, 'end_logits': InferContext.ResultFormat.RAW } start = time.time() async_id = ctx.async_run(inputs_dict, outputs_dict, batch_size=present_batch_size) outstanding[async_id] = PendingResult(async_id=async_id, start_time=start, inputs=inputs_dict) sent_prog.update(n=present_batch_size) # Try to process at least one response per request process_outstanding(len(outstanding) >= max_outstanding) tqdm.tqdm.write( "All Requests Sent! Waiting for responses. Outstanding: {}.\n".format( len(outstanding))) # Now process all outstanding requests while (len(outstanding) > 0): process_outstanding(True) all_results_end = time.time() all_results_total = (all_results_end - all_results_start) * 1000.0 print("-----------------------------") print("Individual Time Runs - Ignoring first two iterations") print("Total Time: {} ms".format(all_results_total)) print("-----------------------------") print("-----------------------------") print("Total Inference Time = %0.2f for" "Sentences processed = %d" % (sum(time_list), len(eval_features))) print("Throughput Average (sentences/sec) = %0.2f" % (len(eval_features) / all_results_total * 1000.0)) print("-----------------------------") time_list.sort() avg = np.mean(time_list) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) print("-----------------------------") print("Summary Statistics") print("Batch size =", FLAGS.predict_batch_size) print("Sequence Length =", FLAGS.max_seq_length) print("Latency Confidence Level 95 (ms) =", cf_95 * 1000) print("Latency Confidence Level 99 (ms) =", cf_99 * 1000) print("Latency Confidence Level 100 (ms) =", cf_100 * 1000) print("Latency Average (ms) =", avg * 1000) print("-----------------------------") output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file)
def run_client(): """ Ask a question of context on TRTIS. :param context: str :param question: str :param question_id: int :return: """ tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) # ------------------------------------------------------------- # Creation of examples here # ------------------------------------------------------------- paragraph = """The koala (Phascolarctos cinereus, or, inaccurately, koala bear[a]) is an arboreal herbivorous marsupial native to Australia. It is the only extant representative of the family Phascolarctidae and its closest living relatives are the wombats, which comprise the family Vombatidae. The koala is found in coastal areas of the mainland's eastern and southern regions, inhabiting Queensland, New South Wales, Victoria, and South Australia. It is easily recognisable by its stout, tailless body and large head with round, fluffy ears and large, spoon-shaped nose. The koala has a body length of 60–85 cm (24–33 in) and weighs 4–15 kg (9–33 lb). Fur colour ranges from silver grey to chocolate brown. Koalas from the northern populations are typically smaller and lighter in colour than their counterparts further south. These populations possibly are separate subspecies, but this is disputed. """ question_text = "Who is Koala?" examples = [] example = SquadExample( qas_id=1, question_text=question_text, doc_tokens=convert_doc_tokens(paragraph_text=paragraph)) for iterator in range(30): examples.append(example) # Switching from predict_file read to api-read # eval_examples = read_squad_examples( # input_file=FLAGS.predict_file, is_training=False, # version_2_with_negative=FLAGS.version_2_with_negative) eval_examples = examples eval_features = [] def append_feature(feature): eval_features.append(feature) convert_examples_to_features(examples=eval_examples[0:], tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) protocol_str = 'grpc' # http or grpc url = FLAGS.trtis_server_url verbose = True model_name = FLAGS.trtis_model_name model_version = FLAGS.trtis_model_version batch_size = FLAGS.predict_batch_size protocol = ProtocolType.from_str(protocol_str) # or 'grpc' ctx = InferContext(url, protocol, model_name, model_version, verbose) channel = grpc.insecure_channel(url) stub = grpc_service_pb2_grpc.GRPCServiceStub(channel) prof_request = grpc_service_pb2.server__status__pb2.model__config__pb2.ModelConfig( ) prof_response = stub.Profile(prof_request) status_ctx = ServerStatusContext(url, protocol, model_name=model_name, verbose=verbose) model_config_pb2.ModelConfig() status_result = status_ctx.get_server_status() outstanding = {} max_outstanding = 20 sent_prog = tqdm.tqdm(desc="Send Requests", total=len(eval_features)) recv_prog = tqdm.tqdm(desc="Recv Requests", total=len(eval_features)) def process_outstanding(do_wait): if (len(outstanding) == 0): return ready_id = ctx.get_ready_async_request(do_wait) if (ready_id is None): return # If we are here, we got an id result = ctx.get_async_run_results(ready_id, False) stop = time.time() if (result is None): raise ValueError( "Context returned null for async id marked as done") outResult = outstanding.pop(ready_id) time_list.append(stop - outResult.start_time) batch_count = len(outResult.inputs[label_id_key]) for i in range(batch_count): unique_id = int(outResult.inputs[label_id_key][i][0]) start_logits = [float(x) for x in result["start_logits"][i].flat] end_logits = [float(x) for x in result["end_logits"][i].flat] all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) recv_prog.update(n=batch_count) all_results = [] time_list = [] print("Starting Sending Requests....\n") all_results_start = time.time() for inputs_dict in batch(eval_features, batch_size): present_batch_size = len(inputs_dict[label_id_key]) outputs_dict = { 'start_logits': InferContext.ResultFormat.RAW, 'end_logits': InferContext.ResultFormat.RAW } start = time.time() async_id = ctx.async_run(inputs_dict, outputs_dict, batch_size=present_batch_size) outstanding[async_id] = PendingResult(async_id=async_id, start_time=start, inputs=inputs_dict) sent_prog.update(n=present_batch_size) # Try to process at least one response per request process_outstanding(len(outstanding) >= max_outstanding) tqdm.tqdm.write( "All Requests Sent! Waiting for responses. Outstanding: {}.\n".format( len(outstanding))) # Now process all outstanding requests while (len(outstanding) > 0): process_outstanding(True) all_results_end = time.time() all_results_total = (all_results_end - all_results_start) * 1000.0 print("-----------------------------") print("Individual Time Runs - Ignoring first two iterations") print("Total Time: {} ms".format(all_results_total)) print("-----------------------------") print("-----------------------------") print("Total Inference Time = %0.2f for" "Sentences processed = %d" % (sum(time_list), len(eval_features))) print("Throughput Average (sentences/sec) = %0.2f" % (len(eval_features) / all_results_total * 1000.0)) print("-----------------------------") time_list.sort() avg = np.mean(time_list) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) print("-----------------------------") print("Summary Statistics") print("Batch size =", FLAGS.predict_batch_size) print("Sequence Length =", FLAGS.max_seq_length) print("Latency Confidence Level 95 (ms) =", cf_95 * 1000) print("Latency Confidence Level 99 (ms) =", cf_99 * 1000) print("Latency Confidence Level 100 (ms) =", cf_100 * 1000) print("Latency Average (ms) =", avg * 1000) print("-----------------------------")
class BertTransformer(kfserving.KFModel): def __init__(self, name: str, predictor_host: str): super().__init__(name) self.short_paragraph_text = "The Apollo program was the third United States human spaceflight program. " \ "First conceived as a three-man spacecraft to follow the one-man Project Mercury " \ "which put the first Americans in space, Apollo was dedicated to " \ "President John F. Kennedy's national goal of landing a man on the Moon. " \ "The first manned flight of Apollo was in 1968. Apollo ran from 1961 to 1972" \ " followed by the Apollo-Soyuz Test Project a joint Earth orbit mission with " \ "the Soviet Union in 1975." self.predictor_host = predictor_host self.tokenizer = tokenization.FullTokenizer( vocab_file="/mnt/models/vocab.txt", do_lower_case=True) self.model_name = "bert_tf_v2_large_fp16_128_v2" self.model_version = -1 self.protocol = ProtocolType.from_str('http') self.infer_ctx = None def preprocess(self, inputs: Dict) -> Dict: self.doc_tokens = data_processing.convert_doc_tokens( self.short_paragraph_text) self.features = data_processing.convert_examples_to_features( self.doc_tokens, inputs["instances"][0], self.tokenizer, 128, 128, 64) return self.features def predict(self, features: Dict) -> Dict: if not self.infer_ctx: self.infer_ctx = InferContext(self.predictor_host, self.protocol, self.model_name, self.model_version, http_headers='', verbose=True) batch_size = 1 unique_ids = np.int32([1]) segment_ids = features["segment_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] result = self.infer_ctx.run( { 'unique_ids': (unique_ids, ), 'segment_ids': (segment_ids, ), 'input_ids': (input_ids, ), 'input_mask': (input_mask, ) }, { 'end_logits': InferContext.ResultFormat.RAW, 'start_logits': InferContext.ResultFormat.RAW }, batch_size) return result def postprocess(self, result: Dict) -> Dict: end_logits = result['end_logits'][0] start_logits = result['start_logits'][0] n_best_size = 20 # The maximum length of an answer that can be generated. This is needed # because the start and end predictions are not conditioned on one another max_answer_length = 30 (prediction, nbest_json, scores_diff_json) = \ data_processing.get_predictions(self.doc_tokens, self.features, start_logits, end_logits, n_best_size, max_answer_length) return { "predictions": prediction, "prob": nbest_json[0]['probability'] * 100.0 }
nargs='?', default=None, help='Input image / Input folder.') FLAGS = parser.parse_args() protocol = ProtocolType.from_str(FLAGS.protocol) if FLAGS.streaming and protocol != ProtocolType.GRPC: raise Exception("Streaming is only allowed with gRPC protocol") # Make sure the model matches our requirements, and get some # properties of the model that we need for preprocessing input_name, output_name, c, h, w, format, dtype = parse_model( FLAGS.url, protocol, FLAGS.model_name, FLAGS.batch_size, FLAGS.verbose) ctx = InferContext(FLAGS.url, protocol, FLAGS.model_name, FLAGS.model_version, FLAGS.verbose, 0, FLAGS.streaming) filenames = [] if os.path.isdir(FLAGS.image_filename): filenames = [ os.path.join(FLAGS.image_filename, f) for f in os.listdir(FLAGS.image_filename) if os.path.isfile(os.path.join(FLAGS.image_filename, f)) ] else: filenames = [ FLAGS.image_filename, ] filenames.sort()
def infer(self, request): name = self.model_info.architecture version = self.model_info.version.ver ctx = InferContext(self.SERVER_URI, ProtocolType.GRPC, name, version) ctx.run(request[0], request[1], self.batch_size)
def main(_): """ Ask a question of context on Triton. :param context: str :param question: str :param question_id: int :return: """ os.environ[ "TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) # Get the Data if FLAGS.predict_file: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative) elif FLAGS.question and FLAGS.answer: input_data = [{ "paragraphs": [{ "context": FLAGS.context, "qas": [{ "id": 0, "question": FLAGS.question }] }] }] eval_examples = read_squad_examples( input_file=None, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative, input_data=input_data) else: raise ValueError( "Either predict_file or question+answer need to defined") # Get Eval Features = Preprocessing eval_features = [] def append_feature(feature): eval_features.append(feature) convert_examples_to_features(examples=eval_examples[0:], tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) protocol_str = 'grpc' # http or grpc url = FLAGS.triton_server_url verbose = True model_name = FLAGS.triton_model_name model_version = FLAGS.triton_model_version batch_size = FLAGS.predict_batch_size protocol = ProtocolType.from_str(protocol_str) # or 'grpc' ctx = InferContext(url, protocol, model_name, model_version, verbose) status_ctx = ServerStatusContext(url, protocol, model_name=model_name, verbose=verbose) model_config_pb2.ModelConfig() status_result = status_ctx.get_server_status() user_data = UserData() max_outstanding = 20 # Number of outstanding requests outstanding = 0 sent_prog = tqdm.tqdm(desc="Send Requests", total=len(eval_features)) recv_prog = tqdm.tqdm(desc="Recv Requests", total=len(eval_features)) def process_outstanding(do_wait, outstanding): if (outstanding == 0 or do_wait is False): return outstanding # Wait for deferred items from callback functions (infer_ctx, ready_id, idx, start_time, inputs) = user_data._completed_requests.get() if (ready_id is None): return outstanding # If we are here, we got an id result = ctx.get_async_run_results(ready_id) stop = time.time() if (result is None): raise ValueError( "Context returned null for async id marked as done") outstanding -= 1 time_list.append(stop - start_time) batch_count = len(inputs[label_id_key]) for i in range(batch_count): unique_id = int(inputs[label_id_key][i][0]) start_logits = [float(x) for x in result["start_logits"][i].flat] end_logits = [float(x) for x in result["end_logits"][i].flat] all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) recv_prog.update(n=batch_count) return outstanding all_results = [] time_list = [] print("Starting Sending Requests....\n") all_results_start = time.time() idx = 0 for inputs_dict in batch(eval_features, batch_size): present_batch_size = len(inputs_dict[label_id_key]) outputs_dict = { 'start_logits': InferContext.ResultFormat.RAW, 'end_logits': InferContext.ResultFormat.RAW } start_time = time.time() ctx.async_run(partial(completion_callback, user_data, idx, start_time, inputs_dict), inputs_dict, outputs_dict, batch_size=present_batch_size) outstanding += 1 idx += 1 sent_prog.update(n=present_batch_size) # Try to process at least one response per request outstanding = process_outstanding(outstanding >= max_outstanding, outstanding) tqdm.tqdm.write( "All Requests Sent! Waiting for responses. Outstanding: {}.\n".format( outstanding)) # Now process all outstanding requests while (outstanding > 0): outstanding = process_outstanding(True, outstanding) all_results_end = time.time() all_results_total = (all_results_end - all_results_start) * 1000.0 print("-----------------------------") print("Total Time: {} ms".format(all_results_total)) print("-----------------------------") print("-----------------------------") print("Total Inference Time = %0.2f for" "Sentences processed = %d" % (sum(time_list), len(eval_features))) print("Throughput Average (sentences/sec) = %0.2f" % (len(eval_features) / all_results_total * 1000.0)) print("-----------------------------") if FLAGS.output_dir and FLAGS.predict_file: # When inferencing on a dataset, get inference statistics and write results to json file time_list.sort() avg = np.mean(time_list) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) print("-----------------------------") print("Summary Statistics") print("Batch size =", FLAGS.predict_batch_size) print("Sequence Length =", FLAGS.max_seq_length) print("Latency Confidence Level 95 (ms) =", cf_95 * 1000) print("Latency Confidence Level 99 (ms) =", cf_99 * 1000) print("Latency Confidence Level 100 (ms) =", cf_100 * 1000) print("Latency Average (ms) =", avg * 1000) print("-----------------------------") output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, FLAGS.version_2_with_negative, FLAGS.verbose_logging) else: # When inferencing on a single example, write best answer to stdout all_predictions, all_nbest_json, scores_diff_json = get_predictions( eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, FLAGS.version_2_with_negative, FLAGS.verbose_logging) print( "Context is: %s \n\nQuestion is: %s \n\nPredicted Answer is: %s" % (FLAGS.context, FLAGS.question, all_predictions[0]))
def init_trtis(url, protocol, model_name, verbose=True): ctx = InferContext(url, protocol, model_name, 1) return ctx
def close(self): self.cidmgr.delete(self.correlation_id()) # make it work with both 2 and 3 as InferContext does not # inherit from object, so super in broken in 2. InferContext.close(self)
from tensorrtserver.api import api_pb2 from tensorrtserver.api import grpc_service_pb2 from tensorrtserver.api import grpc_service_pb2_grpc from tensorrtserver.api import InferContext from tensorrtserver.api import ProtocolType from utils.triton_utils import parse_model if __name__ == '__main__': url = "localhost:8001" protocol = ProtocolType.from_str("grpc") model_name = "pinet_pytorch" model_version = 1 parse_model(url, protocol, model_name) ctx = InferContext(url, protocol, model_name, 1, False, 0, False) test_image = cv2.imread("./tmp/image1.png") test_image = cv2.resize(test_image, (512, 256)) test_image = test_image[:, :, ::-1] # bgr to rgb test_image = test_image.astype(np.float32) / 255.0 test_image = np.transpose(test_image, [2, 0, 1]) # HWC to CHW ctx.run({"INPUT__0": [test_image]}, { "OUTPUT__0": InferContext.ResultFormat.RAW, "OUTPUT__1": InferContext.ResultFormat.RAW, "OUTPUT__2": InferContext.ResultFormat.RAW }, batch_size=1)