예제 #1
0
파일: p2p_segwit2.py 프로젝트: ndb88/ain
def get_p2pkh_script(pubkeyhash):
    """Get the script associated with a P2PKH."""
    return CScript([
        CScriptOp(OP_DUP),
        CScriptOp(OP_HASH160), pubkeyhash,
        CScriptOp(OP_EQUALVERIFY),
        CScriptOp(OP_CHECKSIG)
    ])
예제 #2
0
def keys_to_multisig_script(keys, *, k=None):
    n = len(keys)
    if k is None:  # n-of-n multisig by default
        k = n
    assert k <= n
    op_k = CScriptOp.encode_op_n(k)
    op_n = CScriptOp.encode_op_n(n)
    checked_keys = [check_key(key) for key in keys]
    return CScript([op_k] + checked_keys + [op_n, OP_CHECKMULTISIG])
예제 #3
0
def ParseScript(json_script):
    script = json_script.split(" ")
    parsed_script = CScript()
    for x in script:
        if len(x) == 0:
            # Empty string, ignore.
            pass
        elif x.isdigit() or (len(x) >= 1 and x[0] == "-" and x[1:].isdigit()):
            # Number
            n = int(x, 0)
            if (n == -1) or (n >= 1 and n <= 16):
                parsed_script = CScript(
                    bytes(parsed_script) + bytes(CScript([n])))
            else:
                parsed_script += CScriptNum(int(x, 0))
        elif x.startswith("0x"):
            # Raw hex data, inserted NOT pushed onto stack:
            for i in range(2, len(x), 2):
                parsed_script = CScript(
                    bytes(parsed_script) + bytes(chr(int(x[i:i + 2], 16))))
        elif x.startswith("'") and x.endswith("'") and len(x) >= 2:
            # Single-quoted string, pushed as data.
            parsed_script += CScript([x[1:-1]])
        else:
            # opcode, e.g. OP_ADD or ADD:
            tryopname = "OP_" + x
            if tryopname in OPCODES_BY_NAME:
                parsed_script += CScriptOp(OPCODES_BY_NAME["OP_" + x])
            else:
                print("ParseScript: error parsing '%s'" % x)
                return ""
    return parsed_script
    def run_test(self):
        # Same genesis block
        assert_equal(self.nodes[0].getblockhash(0),
                     self.nodes[1].getblockhash(0))

        # Different UTXO set
        node0_info = self.nodes[0].gettxoutsetinfo()
        node1_info = self.nodes[1].gettxoutsetinfo()
        print(node0_info)
        print(node1_info)
        assert_equal(node0_info["txouts"], 0)
        assert_equal(node0_info["transactions"], 0)
        assert_equal(node0_info["total_amount"], 0)
        assert_equal(node1_info["txouts"], 1)
        assert_equal(node1_info["transactions"], 1)
        assert_equal(node1_info["total_amount"], NUM_INITIAL_COINS)

        coinbase_tx = self.nodes[0].getblock(
            self.nodes[0].getblockhash(0))["tx"][0]
        issuance_tx = self.nodes[0].getblock(
            self.nodes[0].getblockhash(0))["tx"][1]

        # Test listunspent
        unspent = self.nodes[1].listunspent()
        assert_equal(len(unspent), 1)
        assert_equal(unspent[0]["vout"], 0)
        assert_equal(CScriptOp(int(unspent[0]["scriptPubKey"], 16)), OP_TRUE)
        assert_equal(unspent[0]["amount"], NUM_INITIAL_COINS)
        assert_equal(unspent[0]["confirmations"], 1)

        # Test rpc getraw functionality.

        # Node 0 has txindex.
        self.nodes[0].getrawtransaction(coinbase_tx, False)
        self.nodes[0].getrawtransaction(issuance_tx, False)

        # Node 1 doesn't.
        assert_raises_rpc_error(
            -5,
            "No such mempool transaction. Use -txindex or provide a block hash to enable blockchain transaction queries. Use gettransaction for wallet transactions.",
            self.nodes[1].getrawtransaction, coinbase_tx)
        assert_raises_rpc_error(
            -5,
            "No such mempool transaction. Use -txindex or provide a block hash to enable blockchain transaction queries. Use gettransaction for wallet transactions.",
            self.nodes[1].getrawtransaction, issuance_tx)
        # But it can still access them by providing the genesis block hash.
        self.nodes[1].getrawtransaction(coinbase_tx, False,
                                        self.nodes[0].getblockhash(0))
        self.nodes[1].getrawtransaction(issuance_tx, False,
                                        self.nodes[0].getblockhash(0))

        # Because the issuance tx is OP_TRUE, node 1 (with anyonecanspendaremine) has them in the wallet.
        assert_raises_rpc_error(-5, "Invalid or non-wallet transaction id",
                                self.nodes[0].gettransaction, issuance_tx)
        self.nodes[1].gettransaction(issuance_tx)
예제 #5
0
    def run_test(self):
        # Same genesis block
        assert_equal(self.nodes[0].getblockhash(0),
                     self.nodes[1].getblockhash(0))

        # Different UTXO set
        node0_info = self.nodes[0].gettxoutsetinfo()
        node1_info = self.nodes[1].gettxoutsetinfo()
        print(node0_info)
        print(node1_info)
        assert_equal(node0_info["txouts"], 0)
        assert_equal(node0_info["transactions"], 0)
        assert_equal(node0_info["total_amount"], 0)
        assert_equal(node1_info["txouts"], 1)
        assert_equal(node1_info["transactions"], 1)
        assert_equal(node1_info["total_amount"], NUM_INITIAL_COINS)

        coinbase_tx = self.nodes[0].getblock(
            self.nodes[0].getblockhash(0))["tx"][0]
        issuance_tx = self.nodes[0].getblock(
            self.nodes[0].getblockhash(0))["tx"][1]

        # Test listunspent
        unspent = self.nodes[1].listunspent()
        assert_equal(len(unspent), 1)
        assert_equal(unspent[0]["vout"], 0)
        assert_equal(CScriptOp(int(unspent[0]["scriptPubKey"], 16)), OP_TRUE)
        assert_equal(unspent[0]["amount"], NUM_INITIAL_COINS)
        assert_equal(unspent[0]["confirmations"], 1)

        # Test rpc getraw functionality

        # Coinbase transaction is provably unspendable (OP_RETURN), so even AddCoin won't add it
        assert_raises_rpc_error(
            -5,
            "No such mempool transaction. Use -txindex to enable blockchain transaction queries. Use gettransaction for wallet transactions.",
            self.nodes[0].getrawtransaction, coinbase_tx)
        assert_raises_rpc_error(
            -5,
            "No such mempool transaction. Use -txindex to enable blockchain transaction queries. Use gettransaction for wallet transactions.",
            self.nodes[1].getrawtransaction, coinbase_tx)

        # Issuance transaction is an OP_TRUE, so will be available to second node
        assert_raises_rpc_error(
            -5,
            "No such mempool transaction. Use -txindex to enable blockchain transaction queries. Use gettransaction for wallet transactions.",
            self.nodes[0].getrawtransaction, issuance_tx)
        self.nodes[1].getrawtransaction(issuance_tx)
예제 #6
0
def script_BIP34_coinbase_height(height):
    if height <= 16:
        res = CScriptOp.encode_op_n(height)
        # Append dummy to increase scriptSig size above 2 (see bad-cb-length consensus rule)
        return CScript([res, OP_1])
    return CScript([CScriptNum(height)])
예제 #7
0
    def tapscript_satisfy_test(self,
                               script,
                               inputs=[],
                               add_issuance=False,
                               add_pegin=False,
                               fail=None,
                               add_prevout=False,
                               add_asset=False,
                               add_value=False,
                               add_spk=False,
                               seq=0,
                               add_out_spk=None,
                               add_out_asset=None,
                               add_out_value=None,
                               add_out_nonce=None,
                               ver=2,
                               locktime=0,
                               add_num_outputs=False,
                               add_weight=False,
                               blind=False):
        # Create a taproot utxo
        scripts = [("s0", script)]
        prev_tx, prev_vout, spk, sec, pub, tap = self.create_taproot_utxo(
            scripts)

        if add_pegin:
            fund_info = self.nodes[0].getpeginaddress()
            peg_id = self.nodes[0].sendtoaddress(
                fund_info["mainchain_address"], 1)
            raw_peg_tx = self.nodes[0].gettransaction(peg_id)["hex"]
            peg_txid = self.nodes[0].sendrawtransaction(raw_peg_tx)
            self.nodes[0].generate(101)
            peg_prf = self.nodes[0].gettxoutproof([peg_txid])
            claim_script = fund_info["claim_script"]

            raw_claim = self.nodes[0].createrawpegin(raw_peg_tx, peg_prf,
                                                     claim_script)
            tx = FromHex(CTransaction(), raw_claim['hex'])
        else:
            tx = CTransaction()

        tx.nVersion = ver
        tx.nLockTime = locktime
        # Spend the pegin and taproot tx together
        in_total = prev_tx.vout[prev_vout].nValue.getAmount()
        fees = 1000
        tap_in_pos = 0

        if blind:
            # Add an unrelated output
            key = ECKey()
            key.generate()
            tx.vout.append(
                CTxOut(nValue=CTxOutValue(10000),
                       scriptPubKey=spk,
                       nNonce=CTxOutNonce(key.get_pubkey().get_bytes())))

            tx_hex = self.nodes[0].fundrawtransaction(tx.serialize().hex())
            tx = FromHex(CTransaction(), tx_hex['hex'])

        tx.vin.append(
            CTxIn(COutPoint(prev_tx.sha256, prev_vout), nSequence=seq))
        tx.vout.append(
            CTxOut(nValue=CTxOutValue(in_total - fees),
                   scriptPubKey=spk))  # send back to self
        tx.vout.append(CTxOut(CTxOutValue(fees)))

        if add_issuance:
            blind_addr = self.nodes[0].getnewaddress()
            issue_addr = self.nodes[0].validateaddress(
                blind_addr)['unconfidential']
            # Issuances only require one fee output and that output must the last
            # one. However the way, the current code is structured, it is not possible
            # to this in a super clean without special casing.
            if add_pegin:
                tx.vout.pop()
                tx.vout.pop()
                tx.vout.insert(0,
                               CTxOut(nValue=CTxOutValue(in_total),
                                      scriptPubKey=spk))  # send back to self)
            issued_tx = self.nodes[0].rawissueasset(
                tx.serialize().hex(), [{
                    "asset_amount": 2,
                    "asset_address": issue_addr,
                    "blind": False
                }])[0]["hex"]
            tx = FromHex(CTransaction(), issued_tx)
        # Sign inputs
        if add_pegin:
            signed = self.nodes[0].signrawtransactionwithwallet(
                tx.serialize().hex())
            tx = FromHex(CTransaction(), signed['hex'])
            tap_in_pos += 1
        else:
            # Need to create empty witness when not deserializing from rpc
            tx.wit.vtxinwit.append(CTxInWitness())

        if blind:
            tx.vin[0], tx.vin[1] = tx.vin[1], tx.vin[0]
            utxo = self.get_utxo(tx, 1)
            zero_str = "0" * 64
            blinded_raw = self.nodes[0].rawblindrawtransaction(
                tx.serialize().hex(), [zero_str, utxo["amountblinder"]],
                [1.2, utxo['amount']], [utxo['asset'], utxo['asset']],
                [zero_str, utxo['assetblinder']])
            tx = FromHex(CTransaction(), blinded_raw)
            signed_raw_tx = self.nodes[0].signrawtransactionwithwallet(
                tx.serialize().hex())
            tx = FromHex(CTransaction(), signed_raw_tx['hex'])

        suffix_annex = []
        control_block = bytes([
            tap.leaves["s0"].version + tap.negflag
        ]) + tap.inner_pubkey + tap.leaves["s0"].merklebranch
        # Add the prevout to the top of inputs. The witness script will check for equality.
        if add_prevout:
            inputs = [
                prev_vout.to_bytes(4, 'little'),
                ser_uint256(prev_tx.sha256)
            ]
        if add_asset:
            assert blind  # only used with blinding in testing
            utxo = self.nodes[0].gettxout(
                ser_uint256(tx.vin[1].prevout.hash)[::-1].hex(),
                tx.vin[1].prevout.n)
            if "assetcommitment" in utxo:
                asset = bytes.fromhex(utxo["assetcommitment"])
            else:
                asset = b"\x01" + bytes.fromhex(utxo["asset"])[::-1]
            inputs = [asset[0:1], asset[1:33]]
        if add_value:
            utxo = self.nodes[0].gettxout(
                ser_uint256(tx.vin[1].prevout.hash)[::-1].hex(),
                tx.vin[1].prevout.n)
            if "valuecommitment" in utxo:
                value = bytes.fromhex(utxo["valuecommitment"])
                inputs = [value[0:1], value[1:33]]
            else:
                value = b"\x01" + int(
                    satoshi_round(utxo["value"]) * COIN).to_bytes(8, 'little')
                inputs = [value[0:1], value[1:9]]
        if add_spk:
            ver = CScriptOp.decode_op_n(int.from_bytes(spk[0:1], 'little'))
            inputs = [CScriptNum.encode(CScriptNum(ver))[1:],
                      spk[2:len(spk)]]  # always segwit

        # Add witness for outputs
        if add_out_asset is not None:
            asset = tx.vout[add_out_asset].nAsset.vchCommitment
            inputs = [asset[0:1], asset[1:33]]
        if add_out_value is not None:
            value = tx.vout[add_out_value].nValue.vchCommitment
            if len(value) == 9:
                inputs = [value[0:1], value[1:9][::-1]]
            else:
                inputs = [value[0:1], value[1:33]]
        if add_out_nonce is not None:
            nonce = tx.vout[add_out_nonce].nNonce.vchCommitment
            if len(nonce) == 1:
                inputs = [b'']
            else:
                inputs = [nonce]
        if add_out_spk is not None:
            out_spk = tx.vout[add_out_spk].scriptPubKey
            if len(out_spk) == 0:
                # Python upstream encoding CScriptNum interesting behaviour where it also encodes the length
                # This assumes the implicit wallet behaviour of using segwit outputs.
                # This is useful while sending scripts, but not while using CScriptNums in constructing scripts
                inputs = [
                    CScriptNum.encode(CScriptNum(-1))[1:],
                    sha256(out_spk)
                ]
            else:
                ver = CScriptOp.decode_op_n(
                    int.from_bytes(out_spk[0:1], 'little'))
                inputs = [
                    CScriptNum.encode(CScriptNum(ver))[1:],
                    out_spk[2:len(out_spk)]
                ]  # always segwit
        if add_num_outputs:
            num_outs = len(tx.vout)
            inputs = [CScriptNum.encode(CScriptNum(num_outs))[1:]]
        if add_weight:
            # Add a dummy input and check the overall weight
            inputs = [int(5).to_bytes(8, 'little')]
            wit = inputs + [bytes(tap.leaves["s0"].script), control_block
                            ] + suffix_annex
            tx.wit.vtxinwit[tap_in_pos].scriptWitness.stack = wit

            exp_weight = self.nodes[0].decoderawtransaction(
                tx.serialize().hex())["weight"]
            inputs = [exp_weight.to_bytes(8, 'little')]
        wit = inputs + [bytes(tap.leaves["s0"].script), control_block
                        ] + suffix_annex
        tx.wit.vtxinwit[tap_in_pos].scriptWitness.stack = wit

        if fail:
            assert_raises_rpc_error(-26, fail,
                                    self.nodes[0].sendrawtransaction,
                                    tx.serialize().hex())
            return

        self.nodes[0].sendrawtransaction(hexstring=tx.serialize().hex())
        self.nodes[0].generate(1)
        last_blk = self.nodes[0].getblock(self.nodes[0].getbestblockhash())
        tx.rehash()
        assert (tx.hash in last_blk['tx'])
예제 #8
0
    def run_test(self):
        node = self.nodes[0]  # convenience reference to the node

        self.bootstrap_p2p()  # Add one p2p connection to the node

        best_block = self.nodes[0].getbestblockhash()
        tip = int(best_block, 16)
        best_block_time = self.nodes[0].getblock(best_block)['time']
        block_time = best_block_time + 1

        privkey = b"aa3680d5d48a8283413f7a108367c7299ca73f553735860a87b08f39395618b7"
        key = CECKey()
        key.set_secretbytes(privkey)
        key.set_compressed(True)
        pubkey = CPubKey(key.get_pubkey())
        pubkeyhash = hash160(pubkey)
        SCRIPT_PUB_KEY = CScript([
            CScriptOp(OP_DUP),
            CScriptOp(OP_HASH160), pubkeyhash,
            CScriptOp(OP_EQUALVERIFY),
            CScriptOp(OP_CHECKSIG)
        ])

        self.log.info("Create a new block with an anyone-can-spend coinbase.")
        height = 1
        block = create_block(tip, create_coinbase(height, pubkey), block_time)
        block.solve(self.signblockprivkey)
        # Save the coinbase for later
        block1 = block
        tip = block.sha256
        node.p2p.send_blocks_and_test([block], node, success=True)

        # b'\x64' is OP_NOTIF
        # Transaction will be rejected with code 16 (REJECT_INVALID)
        self.log.info('Test a transaction that is rejected')
        tx1 = create_tx_with_script(block1.vtx[0],
                                    0,
                                    script_sig=b'\x64' * 35,
                                    amount=50 * COIN - 12000)
        node.p2p.send_txs_and_test([tx1],
                                   node,
                                   success=False,
                                   expect_disconnect=False)

        # Make two p2p connections to provide the node with orphans
        # * p2ps[0] will send valid orphan txs (one with low fee)
        # * p2ps[1] will send an invalid orphan tx (and is later disconnected for that)
        self.reconnect_p2p(num_connections=2)

        self.log.info('Test orphan transaction handling ... ')
        # Create a root transaction that we withhold until all dependend transactions
        # are sent out and in the orphan cache
        tx_withhold = CTransaction()
        tx_withhold.vin.append(
            CTxIn(outpoint=COutPoint(block1.vtx[0].malfixsha256, 0)))
        tx_withhold.vout.append(
            CTxOut(nValue=50 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY))
        tx_withhold.calc_sha256()
        (sighash, err) = SignatureHash(CScript([pubkey, OP_CHECKSIG]),
                                       tx_withhold, 0, SIGHASH_ALL)
        signature = key.sign(sighash) + b'\x01'  # 0x1 is SIGHASH_ALL
        tx_withhold.vin[0].scriptSig = CScript([signature])

        # Our first orphan tx with some outputs to create further orphan txs
        tx_orphan_1 = CTransaction()
        tx_orphan_1.vin.append(
            CTxIn(outpoint=COutPoint(tx_withhold.malfixsha256, 0)))
        tx_orphan_1.vout = [
            CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY)
        ] * 3
        tx_orphan_1.calc_sha256()
        (sighash, err) = SignatureHash(SCRIPT_PUB_KEY, tx_orphan_1, 0,
                                       SIGHASH_ALL)
        signature = key.sign(sighash) + b'\x01'  # 0x1 is SIGHASH_ALL
        tx_orphan_1.vin[0].scriptSig = CScript([signature, pubkey])

        # A valid transaction with low fee
        tx_orphan_2_no_fee = CTransaction()
        tx_orphan_2_no_fee.vin.append(
            CTxIn(outpoint=COutPoint(tx_orphan_1.malfixsha256, 0)))
        tx_orphan_2_no_fee.vout.append(
            CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY))
        (sighash, err) = SignatureHash(SCRIPT_PUB_KEY, tx_orphan_2_no_fee, 0,
                                       SIGHASH_ALL)
        signature = key.sign(sighash) + b'\x01'  # 0x1 is SIGHASH_ALL
        tx_orphan_2_no_fee.vin[0].scriptSig = CScript([signature, pubkey])

        # A valid transaction with sufficient fee
        tx_orphan_2_valid = CTransaction()
        tx_orphan_2_valid.vin.append(
            CTxIn(outpoint=COutPoint(tx_orphan_1.malfixsha256, 1)))
        tx_orphan_2_valid.vout.append(
            CTxOut(nValue=10 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY))
        tx_orphan_2_valid.calc_sha256()
        (sighash, err) = SignatureHash(SCRIPT_PUB_KEY, tx_orphan_2_valid, 0,
                                       SIGHASH_ALL)
        signature = key.sign(sighash) + b'\x01'  # 0x1 is SIGHASH_ALL
        tx_orphan_2_valid.vin[0].scriptSig = CScript([signature, pubkey])

        # An invalid transaction with negative fee
        tx_orphan_2_invalid = CTransaction()
        tx_orphan_2_invalid.vin.append(
            CTxIn(outpoint=COutPoint(tx_orphan_1.malfixsha256, 2)))
        tx_orphan_2_invalid.vout.append(
            CTxOut(nValue=11 * COIN, scriptPubKey=SCRIPT_PUB_KEY))
        (sighash, err) = SignatureHash(SCRIPT_PUB_KEY, tx_orphan_2_invalid, 0,
                                       SIGHASH_ALL)
        signature = key.sign(sighash) + b'\x01'  # 0x1 is SIGHASH_ALL
        tx_orphan_2_invalid.vin[0].scriptSig = CScript([signature, pubkey])

        self.log.info('Send the orphans ... ')
        # Send valid orphan txs from p2ps[0]
        node.p2p.send_txs_and_test(
            [tx_orphan_1, tx_orphan_2_no_fee, tx_orphan_2_valid],
            node,
            success=False)
        # Send invalid tx from p2ps[1]
        node.p2ps[1].send_txs_and_test([tx_orphan_2_invalid],
                                       node,
                                       success=False)

        assert_equal(0,
                     node.getmempoolinfo()['size'])  # Mempool should be empty
        assert_equal(2, len(node.getpeerinfo()))  # p2ps[1] is still connected

        self.log.info('Send the withhold tx ... ')
        node.p2p.send_txs_and_test([tx_withhold], node, success=True)

        # Transactions that should end up in the mempool
        expected_mempool = {
            t.hashMalFix
            for t in [
                tx_withhold,  # The transaction that is the root for all orphans
                tx_orphan_1,  # The orphan transaction that splits the coins
                tx_orphan_2_valid,  # The valid transaction (with sufficient fee)
            ]
        }
        # Transactions that do not end up in the mempool
        # tx_orphan_no_fee, because it has too low fee (p2ps[0] is not disconnected for relaying that tx)
        # tx_orphan_invaid, because it has negative fee (p2ps[1] is disconnected for relaying that tx)

        wait_until(lambda: 1 == len(node.getpeerinfo()),
                   timeout=12)  # p2ps[1] is no longer connected
        assert_equal(expected_mempool, set(node.getrawmempool()))

        # restart node with sending BIP61 messages disabled, check that it disconnects without sending the reject message
        self.log.info(
            'Test a transaction that is rejected, with BIP61 disabled')
        self.restart_node(0, ['-enablebip61=0', '-persistmempool=0'])
        self.reconnect_p2p(num_connections=1)
        node.p2p.send_txs_and_test([tx1],
                                   node,
                                   success=False,
                                   expect_disconnect=False)
        # send_txs_and_test will have waited for disconnect, so we can safely check that no reject has been received
        assert_equal(node.p2p.reject_code_received, None)