예제 #1
0
 def test_fit(self):
     """ optimization test """
     self.vc.optimize(verbose=False)
     params = self.vc.getScales()
     if self.generate:
         self.D['params_true'] = params
         data.dump(self.D,self.dataset)
         self.generate=False
     params_true = self.D['params_true']
     RV = ((SP.absolute(params)-SP.absolute(params_true))**2).max()
     self.assertTrue(RV<1e-6)
예제 #2
0
 def test_fit(self):
     """ optimization test """
     self.vc.optimize(verbose=False)
     params = self.vc.getScales()
     if self.generate:
         self.D['params_true'] = params
         data.dump(self.D, self.dataset)
         self.generate = False
     params_true = self.D['params_true']
     RV = ((SP.absolute(params) - SP.absolute(params_true))**2).max()
     self.assertTrue(RV < 1e-6)
예제 #3
0
 def test_fit(self):
     """ optimization test """
     self.vc.optimize(verbose=False)
     params = self.vc.getScales()
     if self.generate:
         self.D['params_true'] = params
         data.dump(self.D,self.dataset)
         self.generate=False
     params_true = self.D['params_true']
     RV = ((SP.absolute(params)-SP.absolute(params_true))**2).max()
     #permit more flexibility, as we set a few values to NAN
     self.assertTrue(RV<1e-4)
예제 #4
0
 def test_fit(self):
     """ optimization test """
     self.vc.optimize(verbose=False)
     params = self.vc.getScales()
     if self.generate:
         self.D['params_true'] = params
         data.dump(self.D, self.dataset)
         self.generate = False
     params_true = self.D['params_true']
     RV = ((SP.absolute(params) - SP.absolute(params_true))**2).max()
     #permit more flexibility, as we set a few values to NAN
     self.assertTrue(RV < 1e-4)
예제 #5
0
    def test_fitFast(self):
        """ optimization test """
        self.vc.optimize(fast=True,verbose=False)
        params = self.vc.getScales()
        if self.generate:
            self.D['params_true'] = params
            data.dump(self.D,self.dataset)
            self.generate=False

        params_true = self.D['params_true']
        #make sign invariant
        RV = ((SP.absolute(params)-SP.absolute(params_true))**2).max()<1e-6
        self.assertTrue(RV)
예제 #6
0
    def test_fitFast(self):
        """ optimization test """
        self.vc.optimize(fast=True, verbose=False)
        params = self.vc.getScales()
        if self.generate:
            self.D['params_true'] = params
            data.dump(self.D, self.dataset)
            self.generate = False

        params_true = self.D['params_true']
        #make sign invariant
        RV = ((SP.absolute(params) - SP.absolute(params_true))**2).max() < 1e-6
        self.assertTrue(RV)
예제 #7
0
    def test_fit(self):
        """ test fitting """
        self.lmmlasso.set_params(alpha=1e-1)
        self.lmmlasso.fit(self.D['X'], self.D['y'], self.D['K'])
        params = self.lmmlasso.coef_
        yhat = self.lmmlasso.predict(self.D['X'], self.D['K'])

        if self.generate:
            self.D['params_true'] = params
            self.D['yhat'] = yhat
            data.dump(self.D, self.dataset)
            self.generate = False
        params_true = self.D['params_true']
        yhat_true = self.D['yhat']

        RV = ((SP.absolute(params) - SP.absolute(params_true))**2).max()
        np.testing.assert_almost_equal(RV, 0., decimal=4)

        RV = ((SP.absolute(yhat) - SP.absolute(yhat_true))**2).max()
        np.testing.assert_almost_equal(RV, 0., decimal=2)
예제 #8
0
    def test_fit(self):
        """ test fitting """
        self.lmmlasso.set_params(alpha=1e-1)
        self.lmmlasso.fit(self.D['X'],self.D['y'],self.D['K'])
        params = self.lmmlasso.coef_
        yhat = self.lmmlasso.predict(self.D['X'],self.D['K'])

        if self.generate:
            self.D['params_true'] = params
            self.D['yhat'] = yhat
            data.dump(self.D,self.dataset)
            self.generate=False
        params_true = self.D['params_true']
        yhat_true   = self.D['yhat']

        RV = ((SP.absolute(params)-SP.absolute(params_true))**2).max()
        np.testing.assert_almost_equal(RV, 0., decimal=4)

        RV = ((SP.absolute(yhat)-SP.absolute(yhat_true))**2).max()
        np.testing.assert_almost_equal(RV, 0., decimal=2)