def main(): """ Main function to spawn the train and test process. """ args = parse_args() cfg = load_config(args) # Perform multi-clip testing. if cfg.TEST.ENABLE: if cfg.NUM_GPUS > 1: torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, test, args.init_method, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: test(cfg=cfg)
def main(): """ Main function to spawn the train and test process. """ args = parse_args() cfg = load_config(args) print('=' * 20) # print(cfg) print('Num of GPUs: ', cfg.NUM_GPUS) print(cfg.TRAIN) print(cfg.TEST) print('output dir is: ', cfg.OUTPUT_DIR) # Perform training. if cfg.TRAIN.ENABLE: print("begin to trian the model... ") if cfg.NUM_GPUS > 1: print('gpu is over 1') torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, train, args.init_method, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: train(cfg=cfg) # Perform multi-clip testing. if cfg.TEST.ENABLE: print("begin to test the model... ") if cfg.NUM_GPUS > 1: torch.multiprocessing.spawn( mpu.run, nprocs=cfg.NUM_GPUS, args=( cfg.NUM_GPUS, test, args.init_method, cfg.SHARD_ID, cfg.NUM_SHARDS, cfg.DIST_BACKEND, cfg, ), daemon=False, ) else: test(cfg=cfg)
'loss_rcnn_box': loss_rcnn_box } logger.add_scalars("logs_s_{}/losses".format(args.session), info, (epoch - 1) * iters_per_epoch + step) loss_temp = 0 start = time.time() if (args.val_interval and (epoch + 1) % args.val_interval == 0)\ and (args.dataset_val is not None): # validate the current model args_val = copy.deepcopy(args) args_val.imdbval_name = args.dataset_val mAP = test(args_val, model=fasterRCNN) if mAP > best_model_mAP: # save the model as the current best print("New best model: mAP={0:.4f}, {1} epochs".format( mAP, epoch + 1)) best_model_mAP = mAP best_model_save_name = os.path.join( output_dir, 'best_model_{0}.pth'.format(args.session)) save_checkpoint( { 'session': args.session, 'epoch': epoch + 1, 'model':
import main import test_net #main.run() #file_name = "_generation-001-specimen-000" file_name = "_generation-007-specimen-000" test_net.test(file_name)