예제 #1
0
    def test_score_for_python_version(self):
        tf = PyTensorCoFi(n_factors=2)
        inp = [{"user": 10, "item": 100},
               {"user": 10, "item": 110},
               {"user": 12, "item": 120}]
        inp = pd.DataFrame(inp)
        tf.fit(inp)
        uid = tf.data_map[tf.get_user_column()][10]
        iid = tf.data_map[tf.get_item_column()][100]

        tf.factors[0][uid, 0] = 0
        tf.factors[0][uid, 1] = 1
        tf.factors[1][iid, 0] = 1
        tf.factors[1][iid, 1] = 5
        self.assertEqual(0*1+1*5, tf.get_score(10, 100))
예제 #2
0
    def test_tensor_score_against_testfm(self):
        """
        [recommendation.models.TensorCoFi] Test tensorcofi scores with test.fm benchmark
        """
        evaluator = Evaluator()
        tc = TensorCoFi(n_users=len(self.df.user.unique()), n_items=len(self.df.item.unique()), n_factors=2)
        ptc = PyTensorCoFi()
        training, testing = testfm.split.holdoutByRandom(self.df, 0.9)

        items = training.item.unique()
        tc.fit(training)
        ptc.fit(training)
        tc_score = evaluator.evaluate_model(tc, testing, all_items=items)[0]
        ptc_score = evaluator.evaluate_model(ptc, testing, all_items=items)[0]
        assert abs(tc_score-ptc_score) < .15, \
            "TensorCoFi score is not close enough to testfm benchmark (%.3f != %.3f)" % (tc_score, ptc_score)
예제 #3
0
    def test_ids_returns_for_python_version(self):
        tf = PyTensorCoFi(n_factors=2)
        inp = [{"user": 10, "item": 100},
               {"user": 10, "item": 110},
               {"user": 12, "item": 120}]
        inp = pd.DataFrame(inp)
        tf.fit(inp)

        # Test the id in map
        uid = tf.data_map[tf.get_user_column()][10]
        iid = tf.data_map[tf.get_item_column()][100]
        self.assertEquals(uid, 0)
        self.assertEquals(iid, 0)

        # Test number of factors
        self.assertEquals(len(tf.factors[0][uid, :]), tf.number_of_factors)
        self.assertEquals(len(tf.factors[1][iid, :]), tf.number_of_factors)
예제 #4
0
    def test_nogil_against_std_05(self):
        """
        [EVALUATOR] Test the groups measure differences between python and c implementations for 5% training
        """
        df = pd.read_csv(resource_filename(testfm.__name__, 'data/movielenshead.dat'),
                         sep="::", header=None, names=['user', 'item', 'rating', 'date', 'title'])
        model = PyTensorCoFi()
        ev = Evaluator(False)
        ev_nogil = Evaluator()
        results = {"implementation": [], "measure": []}
        for i in range(SAMPLE_SIZE_FOR_TEST):
            training, testing = testfm.split.holdoutByRandom(df, 0.05)
            model.fit(training)
            results["implementation"].append("Cython"), results["measure"].append(ev_nogil.evaluate_model(model, testing)[0])
            results["implementation"].append("Python"), results["measure"].append(ev.evaluate_model(model, testing)[0])

        #####################
        # ANOVA over result #
        #####################
        assert_equality_in_groups(results, alpha=ALPHA, groups="implementation", test_var="measure")
예제 #5
0
    def test_score_for_python_version(self):
        tf = PyTensorCoFi(n_factors=2)
        inp = [{
            "user": 10,
            "item": 100
        }, {
            "user": 10,
            "item": 110
        }, {
            "user": 12,
            "item": 120
        }]
        inp = pd.DataFrame(inp)
        tf.fit(inp)
        uid = tf.data_map[tf.get_user_column()][10]
        iid = tf.data_map[tf.get_item_column()][100]

        tf.factors[0][uid, 0] = 0
        tf.factors[0][uid, 1] = 1
        tf.factors[1][iid, 0] = 1
        tf.factors[1][iid, 1] = 5
        self.assertEqual(0 * 1 + 1 * 5, tf.get_score(10, 100))
예제 #6
0
    def test_ids_returns_for_python_version(self):
        tf = PyTensorCoFi(n_factors=2)
        inp = [{
            "user": 10,
            "item": 100
        }, {
            "user": 10,
            "item": 110
        }, {
            "user": 12,
            "item": 120
        }]
        inp = pd.DataFrame(inp)
        tf.fit(inp)

        # Test the id in map
        uid = tf.data_map[tf.get_user_column()][10]
        iid = tf.data_map[tf.get_item_column()][100]
        self.assertEquals(uid, 0)
        self.assertEquals(iid, 0)

        # Test number of factors
        self.assertEquals(len(tf.factors[0][uid, :]), tf.number_of_factors)
        self.assertEquals(len(tf.factors[1][iid, :]), tf.number_of_factors)
예제 #7
0
 def test_fit_for_python_version(self):
     tf = PyTensorCoFi(n_factors=2)
     tf.fit(self.df)
     #item and user are row vectors
     self.assertEqual(len(self.df.user.unique()), tf.factors[0].shape[0])
     self.assertEqual(len(self.df.item.unique()), tf.factors[1].shape[0])
예제 #8
0
 def test_fit_for_python_version(self):
     tf = PyTensorCoFi(n_factors=2)
     tf.fit(self.df)
     #item and user are row vectors
     self.assertEqual(len(self.df.user.unique()), tf.factors[0].shape[0])
     self.assertEqual(len(self.df.item.unique()), tf.factors[1].shape[0])
예제 #9
0
from testfm.evaluation.evaluator import Evaluator
from pkg_resources import resource_filename

from testfm.evaluation.parameter_tuning import ParameterTuning

if __name__ == "__main__":
    eval = Evaluator(
    )  # Call this before loading the data to save memory (fork of process takes place)

    # Prepare the data
    df = pd.read_csv(resource_filename(testfm.__name__,
                                       'data/movielenshead.dat'),
                     sep="::",
                     header=None,
                     names=['user', 'item', 'rating', 'date', 'title'])
    print df.head()
    training, testing = testfm.split.holdoutByRandom(df, 0.9)

    print "Tuning the parameters."
    tr, validation = testfm.split.holdoutByRandom(training, 0.7)
    pt = ParameterTuning()
    pt.set_max_iterations(100)
    pt.set_z_value(90)
    tf_params = pt.get_best_params(TensorCoFi, tr, validation)
    print tf_params

    tf = TensorCoFi()
    tf.set_params(**tf_params)
    tf.fit(training)
    print tf.get_name().ljust(50),
    print eval.evaluate_model(tf, testing, all_items=training.item.unique())