def testing_run_hardcoded_RBM_pass(self):
        self.rbms.append(
            rbm.RBM(NUM_DATAPOINTS,
                    3,
                    visible_unit_type='gauss',
                    model_name=self.name + "_layer_1",
                    verbose=1,
                    main_dir='layer_1_test'))
        self.rbms.append(
            rbm.RBM(3,
                    2,
                    visible_unit_type='bin',
                    model_name=self.name + '_layer_2',
                    verbose=1,
                    main_dir='layer_2_test'))

        training_set = pd.read_csv(TRAINING_SET_PATH, sep=',', header=None)
        training_set = training_set.values

        self.rbms[0].fit(training_set)

        test_set = pd.read_csv(TEST_SET_PATH, sep=',', header=None)
        test_set = test_set.values

        training_set_transform = self.rbms[0].transform(training_set)

        testing_tools.write_csv(
            training_set_transform,
            TESTING_PATH + '/L1_training_set_transformed.csv')

        self.rbms[1].fit(training_set_transform)

        x = self.rbms[1].transform(training_set_transform)
        testing_tools.write_csv(
            x, TESTING_PATH + '/L2_training_set_transformed_transformed.csv')
예제 #2
0
	def test(self , dataset):
		init_op = tf.global_variables_initializer()

		with tf.Session() as sess:
			sess.run(init_op)
			#sess.run(self.testfunc  , feed_dict={self.X:dataset})
			#print(self.layer1_W)
			#x = (sess.run(self.layer3 , feed_dict={self.X:dataset}).shape)
			x = sess.run(self.layer3 , feed_dict={self.X:dataset})
			
			testing_tools.write_csv(x , 'didthiswork.csv')
    def testing_load_previous_and_transform(self):
        # Note - this doesn't work and i don't know why
        # load up our rbms[2]
        r = rbm.RBM(3,
                    2,
                    visible_unit_type='bin',
                    model_name=self.name + '_layer_2',
                    verbose=1,
                    main_dir='layer_2_test')
        r.load_model(
            [[3, 2], [22, 3]], 1,
            '/home/tyler/2018_Development/Fantasy_Stats_ML/layer_2_test/models/test1_layer_2'
        )

        test_set = pd.read_csv(
            'FFNN_Dev_Testing/L1_training_set_transformed.csv',
            sep=',',
            header=None)

        testing_tools.write_csv(r.transform(test_set),
                                TESTING_PATH + '/Loaded_L2_transform.csv')
 def save_RBM_data(self):
     for rbm in self.rbms:
         # the name of the folder we will write in
         rbm_dir = self.target_directory + rbm.model_name + '/'
         # get the rbm values
         values = rbm.get_model_parameters()
         # store 'W'
         testing_tools.write_csv(values['W'], rbm_dir + 'W.csv')
         testing_tools.write_csv(values['bh_'], rbm_dir + 'bh_.csv')
         testing_tools.write_csv(values['bv_'], rbm_dir + 'bv_.csv')
TEST_SET_PATH = "FormattedFantasyData/2018_data.csv"
NUM_DATAPOINTS = 22

# import our training dataset into a dataframe, then immediately recast it to numpy array
#	this dataset contains fantasy stats for the past decate (excluding this current season)
#	and is numerical only
# 	the data has 22 points of data for each player
training_set = pd.read_csv(TRAINING_SET_PATH, sep=',', header=None)
training_set = training_set.values

# get our test set
test_set = pd.read_csv(TEST_SET_PATH, sep=',', header=None)
test_set = test_set.values

# initialize RBM
r = rbm.RBM(NUM_DATAPOINTS,
            3,
            visible_unit_type='gauss',
            model_name="fantasy_position",
            verbose=1,
            main_dir='fantasy_test')

# fit for training set
r.fit(training_set)

# see what this puppy thinks of the test set
testing_tools.write_csv(r.transform(test_set),
                        'RBMTestingResults/2018_data_transform_first.csv')

print("finished")
예제 #6
0
import rbm
import pandas as pd 
import testing_tools as tt 

# import our data (numerical values only)
df = pd.read_csv("nums_only.csv" , sep=',' , header=None)
df = df.values # just recasts our dataframe as a numpy array without labels or column names etc

r = rbm.RBM(27 , 2 , visible_unit_type='gauss', model_name="test_model" , verbose=1, main_dir='sametest')

r.load_model([27,2] , 1, '/home/tyler/2018_Development/Fantasy_Stats_ML/sametest/models/test_model') 

print(r.get_model_parameters())

tt.write_csv(r.transform(df) , 'model_trained_data_transformed_2.csv')