def test_NonUniformImage_colormap(): window = pg.GraphicsLayoutWidget() viewbox = pg.ViewBox() window.setCentralWidget(viewbox) window.resize(200, 200) window.show() x = [1.0, 3.0, 10.0] y = [1.0, 2.0, 4.0] X, Y = np.meshgrid(x, y, indexing='ij') Z = X * Y Z[:, 0] = [np.NINF, np.NAN, np.PINF] image = NonUniformImage(x, y, Z, border=fn.mkPen('g')) cmap = ColorMap(pos=[0.0, 1.0], color=[(0, 0, 0), (255, 255, 255)]) image.setColorMap(cmap) viewbox.addItem(image) QtTest.QTest.qWaitForWindowExposed(window) QtTest.QTest.qWait(100) assertImageApproved(window, 'nonuniform_image/colormap-3x3')
def test_NonUniformImage_lut(): window = pg.GraphicsLayoutWidget() viewbox = pg.ViewBox() window.setCentralWidget(viewbox) window.resize(200, 200) window.show() x = [1.0, 3.0, 10.0] y = [1.0, 2.0, 4.0] X, Y = np.meshgrid(x, y, indexing='ij') Z = X * Y image = NonUniformImage(x, y, Z, border=fn.mkPen('g')) viewbox.addItem(image) lut = pg.HistogramLUTItem() window.addItem(lut) image.setLookupTable(lut, autoLevel=True) h = image.getHistogram() lut.plot.setData(*h) QtTest.QTest.qWaitForWindowExposed(window) QtTest.QTest.qWait(100) assertImageApproved(window, 'nonuniform_image/lut-3x3')
def test_PlotCurveItem(): p = pg.GraphicsLayoutWidget() p.resize(200, 150) p.ci.setContentsMargins(4, 4, 4, 4) # default margins vary by platform p.show() v = p.addViewBox() data = np.array([1,4,2,3,np.inf,5,7,6,-np.inf,8,10,9,np.nan,-1,-2,0]) c = pg.PlotCurveItem(data) v.addItem(c) v.autoRange() # Check auto-range works. Some platform differences may be expected.. checkRange = np.array([[-1.1457564053237301, 16.145756405323731], [-3.076811473165955, 11.076811473165955]]) assert np.allclose(v.viewRange(), checkRange) assertImageApproved(p, 'plotcurveitem/connectall', "Plot curve with all points connected.") c.setData(data, connect='pairs') assertImageApproved(p, 'plotcurveitem/connectpairs', "Plot curve with pairs connected.") c.setData(data, connect='finite') assertImageApproved(p, 'plotcurveitem/connectfinite', "Plot curve with finite points connected.") c.setData(data, connect='finite', skipFiniteCheck=True) assertImageApproved(p, 'plotcurveitem/connectfinite', "Plot curve with finite points connected using QPolygonF.") c.setData(data, connect=np.array([1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0])) assertImageApproved(p, 'plotcurveitem/connectarray', "Plot curve with connection array.") p.close()
def check_getArrayRegion(roi, name, testResize=True, transpose=False): # on windows, edges corner pixels seem to be slightly different from other platforms # giving a pxCount=2 for a fudge factor if isinstance(roi, (pg.ROI, pg.RectROI)) and platform.system() == "Windows": pxCount = 2 else: pxCount = -1 initState = roi.getState() win = pg.GraphicsView() win.show() resizeWindow(win, 200, 400) # Don't use Qt's layouts for testing--these generate unpredictable results. # Instead, place the viewboxes manually vb1 = pg.ViewBox() win.scene().addItem(vb1) vb1.setPos(6, 6) vb1.resize(188, 191) vb2 = pg.ViewBox() win.scene().addItem(vb2) vb2.setPos(6, 203) vb2.resize(188, 191) img1 = pg.ImageItem(border='w') img2 = pg.ImageItem(border='w') vb1.addItem(img1) vb2.addItem(img2) np.random.seed(0) data = np.random.normal(size=(7, 30, 31, 5)) data[0, :, :, :] += 10 data[:, 1, :, :] += 10 data[:, :, 2, :] += 10 data[:, :, :, 3] += 10 if transpose: data = data.transpose(0, 2, 1, 3) img1.setImage(data[0, ..., 0]) vb1.setAspectLocked() vb1.enableAutoRange(True, True) roi.setZValue(10) vb1.addItem(roi) if isinstance(roi, pg.RectROI): if transpose: assert roi.getAffineSliceParams(data, img1, axes=(1, 2)) == ([ 28.0, 27.0 ], ((1.0, 0.0), (0.0, 1.0)), (1.0, 1.0)) else: assert roi.getAffineSliceParams(data, img1, axes=(1, 2)) == ([ 27.0, 28.0 ], ((1.0, 0.0), (0.0, 1.0)), (1.0, 1.0)) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) #assert np.all((rgn == data[:, 1:-2, 1:-2, :]) | (rgn == 0)) img2.setImage(rgn[0, ..., 0]) vb2.setAspectLocked() vb2.enableAutoRange(True, True) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion', 'Simple ROI region selection.', pxCount=pxCount) with pytest.raises(TypeError): roi.setPos(0, False) roi.setPos([0.5, 1.5]) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion_halfpx', 'Simple ROI region selection, 0.5 pixel shift.', pxCount=pxCount) roi.setAngle(45) roi.setPos([3, 0]) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion_rotate', 'Simple ROI region selection, rotation.', pxCount=pxCount) if testResize: roi.setSize([60, 60]) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion_resize', 'Simple ROI region selection, resized.', pxCount=pxCount) img1.setPos(0, img1.height()) img1.setTransform(QtGui.QTransform().scale(1, -1).rotate(20), True) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion_img_trans', 'Simple ROI region selection, image transformed.', pxCount=pxCount) vb1.invertY() rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved(win, name + '/roi_getarrayregion_inverty', 'Simple ROI region selection, view inverted.', pxCount=pxCount) roi.setState(initState) img1.setPos(0, 0) img1.setTransform(QtGui.QTransform.fromScale(1, 0.5)) rgn = roi.getArrayRegion(data, img1, axes=(1, 2)) img2.setImage(rgn[0, ..., 0]) app.processEvents() assertImageApproved( win, name + '/roi_getarrayregion_anisotropic', 'Simple ROI region selection, image scaled anisotropically.', pxCount=pxCount) # allow the roi to be re-used roi.scene().removeItem(roi) win.hide()
def test_PolyLineROI(): rois = [(pg.PolyLineROI([[0, 0], [10, 0], [0, 15]], closed=True, pen=0.3), 'closed'), (pg.PolyLineROI([[0, 0], [10, 0], [0, 15]], closed=False, pen=0.3), 'open')] #plt = pg.plot() plt = pg.GraphicsView() plt.show() resizeWindow(plt, 200, 200) vb = pg.ViewBox() plt.scene().addItem(vb) vb.resize(200, 200) #plt.plotItem = pg.PlotItem() #plt.scene().addItem(plt.plotItem) #plt.plotItem.resize(200, 200) plt.scene().minDragTime = 0 # let us simulate mouse drags very quickly. # seemingly arbitrary requirements; might need longer wait time for some platforms.. QtTest.QTest.qWaitForWindowExposed(plt) QtTest.QTest.qWait(100) for r, name in rois: vb.clear() vb.addItem(r) vb.autoRange() app.processEvents() assertImageApproved(plt, 'roi/polylineroi/' + name + '_init', 'Init %s polyline.' % name) initState = r.getState() assert len(r.getState()['points']) == 3 # hover over center center = r.mapToScene(pg.Point(3, 3)) mouseMove(plt, center) assertImageApproved(plt, 'roi/polylineroi/' + name + '_hover_roi', 'Hover mouse over center of ROI.') # drag ROI mouseDrag(plt, center, center + pg.Point(10, -10), QtCore.Qt.MouseButton.LeftButton) assertImageApproved(plt, 'roi/polylineroi/' + name + '_drag_roi', 'Drag mouse over center of ROI.') # hover over handle pt = r.mapToScene(pg.Point(r.getState()['points'][2])) mouseMove(plt, pt) assertImageApproved(plt, 'roi/polylineroi/' + name + '_hover_handle', 'Hover mouse over handle.') # drag handle mouseDrag(plt, pt, pt + pg.Point(5, 20), QtCore.Qt.MouseButton.LeftButton) assertImageApproved(plt, 'roi/polylineroi/' + name + '_drag_handle', 'Drag mouse over handle.') # hover over segment pt = r.mapToScene((pg.Point(r.getState()['points'][2]) + pg.Point(r.getState()['points'][1])) * 0.5) mouseMove(plt, pt + pg.Point(0, 2)) assertImageApproved(plt, 'roi/polylineroi/' + name + '_hover_segment', 'Hover mouse over diagonal segment.') # click segment mouseClick(plt, pt, QtCore.Qt.MouseButton.LeftButton) assertImageApproved(plt, 'roi/polylineroi/' + name + '_click_segment', 'Click mouse over segment.') # drag new handle mouseMove( plt, pt + pg.Point(10, -10) ) # pg bug: have to move the mouse off/on again to register hover mouseDrag(plt, pt, pt + pg.Point(10, -10), QtCore.Qt.MouseButton.LeftButton) assertImageApproved(plt, 'roi/polylineroi/' + name + '_drag_new_handle', 'Drag mouse over created handle.') # clear all points r.clearPoints() assertImageApproved(plt, 'roi/polylineroi/' + name + '_clear', 'All points cleared.') assert len(r.getState()['points']) == 0 # call setPoints r.setPoints(initState['points']) assertImageApproved(plt, 'roi/polylineroi/' + name + '_setpoints', 'Reset points to initial state.') assert len(r.getState()['points']) == 3 # call setState r.setState(initState) assertImageApproved(plt, 'roi/polylineroi/' + name + '_setstate', 'Reset ROI to initial state.') assert len(r.getState()['points']) == 3 plt.hide()
def test_ImageItem(transpose=False): w = pg.GraphicsLayoutWidget() w.show() view = pg.ViewBox() w.setCentralWidget(view) w.resize(200, 200) img = TransposedImageItem(border=0.5, transpose=transpose) view.addItem(img) # test mono float np.random.seed(0) data = np.random.normal(size=(20, 20)) dmax = data.max() data[:10, 1] = dmax + 10 data[1, :10] = dmax + 12 data[3, :10] = dmax + 13 img.setImage(data) QtTest.QTest.qWaitForWindowExposed(w) time.sleep(0.1) app.processEvents() assertImageApproved( w, 'imageitem/init', 'Init image item. View is auto-scaled, image axis 0 marked by 1 line, axis 1 is marked by 2 lines. Origin in bottom-left.' ) # ..with colormap cmap = pg.ColorMap([0, 0.25, 0.75, 1], [[0, 0, 0, 255], [255, 0, 0, 255], [255, 255, 0, 255], [255, 255, 255, 255]]) img.setLookupTable(cmap.getLookupTable()) assertImageApproved(w, 'imageitem/lut', 'Set image LUT.') # ..and different levels img.setLevels([dmax + 9, dmax + 13]) assertImageApproved(w, 'imageitem/levels1', 'Levels show only axis lines.') img.setLookupTable(None) # test mono int data = np.fromfunction(lambda x, y: x + y * 10, (129, 128)).astype(np.int16) img.setImage(data) assertImageApproved(w, 'imageitem/gradient_mono_int', 'Mono int gradient.') img.setLevels([640, 641]) assertImageApproved(w, 'imageitem/gradient_mono_int_levels', 'Mono int gradient w/ levels to isolate diagonal.') # test mono byte data = np.fromfunction(lambda x, y: x + y, (129, 128)).astype(np.ubyte) img.setImage(data) assertImageApproved(w, 'imageitem/gradient_mono_byte', 'Mono byte gradient.') img.setLevels([127, 128]) assertImageApproved(w, 'imageitem/gradient_mono_byte_levels', 'Mono byte gradient w/ levels to isolate diagonal.') # test monochrome image data = np.zeros((10, 10), dtype='uint8') data[:5, :5] = 1 data[5:, 5:] = 1 img.setImage(data) assertImageApproved(w, 'imageitem/monochrome', 'Ubyte image with only 0,1 values.') # test bool data = data.astype(bool) img.setImage(data) assertImageApproved(w, 'imageitem/bool', 'Boolean mask.') # test RGBA byte data = np.zeros((100, 100, 4), dtype='ubyte') data[..., 0] = np.linspace(0, 255, 100).reshape(100, 1) data[..., 1] = np.linspace(0, 255, 100).reshape(1, 100) data[..., 3] = 255 img.setImage(data) assertImageApproved(w, 'imageitem/gradient_rgba_byte', 'RGBA byte gradient.') img.setLevels([[128, 129], [128, 255], [0, 1], [0, 255]]) assertImageApproved( w, 'imageitem/gradient_rgba_byte_levels', 'RGBA byte gradient. Levels set to show x=128 and y>128.') # test RGBA float data = data.astype(float) img.setImage(data / 1e9) assertImageApproved(w, 'imageitem/gradient_rgba_float', 'RGBA float gradient.') # checkerboard to test alpha img2 = TransposedImageItem(transpose=transpose) img2.setImage(np.fromfunction(lambda x, y: (x + y) % 2, (10, 10)), levels=[-1, 2]) view.addItem(img2) img2.setScale(10) img2.setZValue(-10) data[..., 0] *= 1e-9 data[..., 1] *= 1e9 data[..., 3] = np.fromfunction(lambda x, y: np.sin(0.1 * (x + y)), (100, 100)) img.setImage(data, levels=[[0, 128e-9], [0, 128e9], [0, 1], [-1, 1]]) assertImageApproved(w, 'imageitem/gradient_rgba_float_alpha', 'RGBA float gradient with alpha.') # test composition mode img.setCompositionMode(QtGui.QPainter.CompositionMode.CompositionMode_Plus) assertImageApproved( w, 'imageitem/gradient_rgba_float_additive', 'RGBA float gradient with alpha and additive composition mode.') img2.hide() img.setCompositionMode( QtGui.QPainter.CompositionMode.CompositionMode_SourceOver) # test downsampling data = np.fromfunction(lambda x, y: np.cos(0.002 * x**2), (800, 100)) img.setImage(data, levels=[-1, 1]) assertImageApproved(w, 'imageitem/resolution_without_downsampling', 'Resolution test without downsampling.') img.setAutoDownsample(True) assertImageApproved(w, 'imageitem/resolution_with_downsampling_x', 'Resolution test with downsampling axross x axis.') assert img._lastDownsample == (4, 1) img.setImage(data.T, levels=[-1, 1]) assertImageApproved(w, 'imageitem/resolution_with_downsampling_y', 'Resolution test with downsampling across y axis.') assert img._lastDownsample == (1, 4) w.hide()