def fake_trained_model(db_engine, train_matrix_uuid="efgh", train_end_time=datetime.datetime(2016, 1, 1)): """Creates and stores a trivial trained model and training matrix Args: db_engine (sqlalchemy.engine) Returns: (int) model id for database retrieval """ session = sessionmaker(db_engine)() session.merge(Matrix(matrix_uuid=train_matrix_uuid)) # Create the fake trained model and store in db trained_model = MockTrainedModel() db_model = Model( model_hash="abcd", train_matrix_uuid=train_matrix_uuid, train_end_time=train_end_time, ) session.add(db_model) session.commit() model_id = db_model.model_id session.close() return trained_model, model_id
def __init__(self, matrix_type, matrix_uuid, label_count, db_engine, init_labels=None, metadata_overrides=None, matrix=None): base_metadata = { 'feature_start_time': datetime.date(2014, 1, 1), 'end_time': datetime.date(2015, 1, 1), 'as_of_date_frequency': '1y', 'matrix_id': 'some_matrix', 'label_name': 'label', 'label_timespan': '3month', 'indices': ['entity_id'], 'matrix_type': matrix_type } metadata_overrides = metadata_overrides or {} base_metadata.update(metadata_overrides) if matrix is None: matrix = pandas.DataFrame.from_dict({ 'entity_id': [1, 2], 'feature_one': [3, 4], 'feature_two': [5, 6], 'label': [7, 8] }).set_index('entity_id') if init_labels is None: init_labels = [] self.matrix = matrix self.metadata = base_metadata self.label_count = label_count self.init_labels = init_labels self.matrix_uuid = matrix_uuid session = sessionmaker(db_engine)() session.add(Matrix(matrix_uuid=matrix_uuid))
def __init__( self, matrix_type, matrix_uuid, label_count, db_engine, init_labels=None, metadata_overrides=None, matrix=None, init_as_of_dates=None, ): base_metadata = { "feature_start_time": datetime.date(2014, 1, 1), "end_time": datetime.date(2015, 1, 1), "as_of_date_frequency": "1y", "matrix_id": "some_matrix", "label_name": "label", "label_timespan": "3month", "indices": MatrixStore.indices, "matrix_type": matrix_type, "as_of_times": [datetime.date(2014, 10, 1), datetime.date(2014, 7, 1)], } metadata_overrides = metadata_overrides or {} base_metadata.update(metadata_overrides) if matrix is None: matrix = pd.DataFrame.from_dict({ "entity_id": [1, 2], "as_of_date": [pd.Timestamp(2014, 10, 1), pd.Timestamp(2014, 7, 1)], "feature_one": [3, 4], "feature_two": [5, 6], "label": [7, 8], }).set_index(MatrixStore.indices) if init_labels is None: init_labels = [] labels = matrix.pop("label") self.matrix_label_tuple = matrix, labels self.metadata = base_metadata self.label_count = label_count self.init_labels = pd.Series(init_labels, dtype="float64") self.matrix_uuid = matrix_uuid self.init_as_of_dates = init_as_of_dates or [] session = sessionmaker(db_engine)() session.add(Matrix(matrix_uuid=matrix_uuid)) session.commit()
def fake_trained_model(db_engine, train_matrix_uuid='efgh'): """Creates and stores a trivial trained model and training matrix Args: db_engine (sqlalchemy.engine) Returns: (int) model id for database retrieval """ session = sessionmaker(db_engine)() session.merge(Matrix(matrix_uuid=train_matrix_uuid)) # Create the fake trained model and store in db trained_model = MockTrainedModel() db_model = Model(model_hash='abcd', train_matrix_uuid=train_matrix_uuid) session.add(db_model) session.commit() return trained_model, db_model.model_id
def __init__( self, matrix_type, matrix_uuid, label_count, db_engine, init_labels=None, metadata_overrides=None, matrix=None, ): base_metadata = { "feature_start_time": datetime.date(2014, 1, 1), "end_time": datetime.date(2015, 1, 1), "as_of_date_frequency": "1y", "matrix_id": "some_matrix", "label_name": "label", "label_timespan": "3month", "indices": ["entity_id"], "matrix_type": matrix_type, } metadata_overrides = metadata_overrides or {} base_metadata.update(metadata_overrides) if matrix is None: matrix = pandas.DataFrame.from_dict({ "entity_id": [1, 2], "feature_one": [3, 4], "feature_two": [5, 6], "label": [7, 8], }).set_index("entity_id") if init_labels is None: init_labels = [] self.matrix = matrix self.metadata = base_metadata self.label_count = label_count self.init_labels = init_labels self.matrix_uuid = matrix_uuid session = sessionmaker(db_engine)() session.add(Matrix(matrix_uuid=matrix_uuid))