def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "vilbert" args = test_utils.dummy_args(model=model_name) configuration = Configuration(args) config = configuration.get_config() model_class = registry.get_model_class(model_name) self.vision_feature_size = 1024 self.vision_target_size = 1279 config.model_config[model_name]["training_head_type"] = "pretraining" config.model_config[model_name][ "visual_embedding_dim"] = self.vision_feature_size config.model_config[model_name][ "v_feature_size"] = self.vision_feature_size config.model_config[model_name][ "v_target_size"] = self.vision_target_size config.model_config[model_name]["dynamic_attention"] = False self.pretrain_model = model_class(config.model_config[model_name]) self.pretrain_model.build() config.model_config[model_name][ "training_head_type"] = "classification" config.model_config[model_name]["num_labels"] = 2 self.finetune_model = model_class(config.model_config[model_name]) self.finetune_model.build()
def test_model_configs_for_keys(self): models_mapping = registry.mapping["model_name_mapping"] for model_key, model_cls in models_mapping.items(): if model_cls.config_path() is None: warnings.warn( ("Model {} has no default configuration defined. " + "Skipping it. Make sure it is intentional" ).format(model_key)) continue with contextlib.redirect_stdout(StringIO()): args = dummy_args(model=model_key) configuration = Configuration(args) configuration.freeze() config = configuration.get_config() if model_key == "mmft": continue self.assertTrue( model_key in config.model_config, "Key for model {} doesn't exists in its configuration". format(model_key), )
def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "vinvl" args = test_utils.dummy_args(model=model_name, dataset="test") configuration = Configuration(args) config = configuration.get_config() model_config = config.model_config[model_name] model_config.model = model_name model_config.do_pretraining = False classification_config_dict = { "do_pretraining": False, "heads": {"mlp": {"num_labels": 3129}}, "ce_loss": {"ignore_index": -1}, } self.classification_config = OmegaConf.create( {**model_config, **classification_config_dict} ) pretraining_config_dict = { "do_pretraining": True, "heads": {"mlm": {"hidden_size": 768}}, } self.pretraining_config = OmegaConf.create( {**model_config, **pretraining_config_dict} ) self.sample_list = self._get_sample_list()
def setUp(self): test_utils.setup_proxy() setup_imports() self.model_name = "mmf_transformer" args = test_utils.dummy_args(model=self.model_name) configuration = Configuration(args) self.config = configuration.get_config() self.config.model_config[self.model_name].model = self.model_name
def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "vilt" args = test_utils.dummy_args(model=model_name, dataset="test") configuration = Configuration(args) config = configuration.get_config() model_config = config.model_config[model_name] model_config.model = model_name self.pretrain_model = build_model(model_config)
def setUp(self): test_utils.setup_proxy() setup_imports() self.model_name = "multimodelity_transformer" args = test_utils.dummy_args(model=self.model_name) configuration = Configuration(args) self.config = configuration.get_config() self.config.model_config[self.model_name].model = self.model_name self.finetune_model = build_model( self.config.model_config[self.model_name])
def setUp(self): setup_imports() self.model_name = "mmf_transformer" args = test_utils.dummy_args(model=self.model_name) configuration = Configuration(args) self.config = configuration.get_config() self.model_class = registry.get_model_class(self.model_name) self.finetune_model = self.model_class( self.config.model_config[self.model_name]) self.finetune_model.build()
def setUp(self): setup_imports() model_name = "mmbt" args = test_utils.dummy_args(model=model_name) configuration = Configuration(args) config = configuration.get_config() model_class = registry.get_model_class(model_name) config.model_config[model_name]["training_head_type"] = "classification" config.model_config[model_name]["num_labels"] = 2 self.finetune_model = model_class(config.model_config[model_name]) self.finetune_model.build()
def setUp(self): test_utils.setup_proxy() setup_imports() replace_with_jit() model_name = "visual_bert" args = test_utils.dummy_args(model=model_name) configuration = Configuration(args) config = configuration.get_config() model_config = config.model_config[model_name] model_config.model = model_name self.pretrain_model = build_model(model_config)
def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "mmbt" args = test_utils.dummy_args(model=model_name) configuration = Configuration(args) config = configuration.get_config() model_config = config.model_config[model_name] model_config["training_head_type"] = "classification" model_config["num_labels"] = 2 model_config.model = model_name self.finetune_model = build_model(model_config)
def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "uniter" args = test_utils.dummy_args(model=model_name, dataset="vqa2") configuration = Configuration(args) config = configuration.get_config() model_config = config.model_config[model_name] model_config.model = model_name model_config.losses = {"vqa2": "logit_bce"} model_config.do_pretraining = False model_config.tasks = "vqa2" classification_config_dict = { "do_pretraining": False, "tasks": "vqa2", "heads": { "vqa2": { "type": "mlp", "num_labels": 3129 } }, "losses": { "vqa2": "logit_bce" }, } classification_config = OmegaConf.create({ **model_config, **classification_config_dict }) pretraining_config_dict = { "do_pretraining": True, "tasks": "wra", "heads": { "wra": { "type": "wra" } }, } pretraining_config = OmegaConf.create({ **model_config, **pretraining_config_dict }) self.model_for_classification = build_model(classification_config) self.model_for_pretraining = build_model(pretraining_config)
def setUp(self): setup_imports() torch.manual_seed(1234) config_path = os.path.join( get_mmf_root(), "..", "projects", "butd", "configs", "coco", "beam_search.yaml", ) config_path = os.path.abspath(config_path) args = dummy_args(model="butd", dataset="coco") args.opts.append(f"config={config_path}") configuration = Configuration(args) configuration.config.datasets = "coco" configuration.freeze() self.config = configuration.config registry.register("config", self.config)
def setUp(self): test_utils.setup_proxy() setup_imports() model_name = "vilbert" args = test_utils.dummy_args(model=model_name) configuration = Configuration(args) config = configuration.get_config() self.vision_feature_size = 1024 self.vision_target_size = 1279 model_config = config.model_config[model_name] model_config["training_head_type"] = "pretraining" model_config["visual_embedding_dim"] = self.vision_feature_size model_config["v_feature_size"] = self.vision_feature_size model_config["v_target_size"] = self.vision_target_size model_config["dynamic_attention"] = False model_config.model = model_name model_config["training_head_type"] = "classification" model_config["num_labels"] = 2 self.model_config = model_config
def setUp(self): torch.manual_seed(1234) registry.register("clevr_text_vocab_size", 80) registry.register("clevr_num_final_outputs", 32) config_path = os.path.join( get_mmf_root(), "..", "projects", "others", "cnn_lstm", "clevr", "defaults.yaml", ) config_path = os.path.abspath(config_path) args = dummy_args(model="cnn_lstm", dataset="clevr") args.opts.append(f"config={config_path}") configuration = Configuration(args) configuration.config.datasets = "clevr" configuration.freeze() self.config = configuration.config registry.register("config", self.config)
def setUp(self): setup_imports() torch.manual_seed(1234) config_path = os.path.join( get_mmf_root(), "..", "projects", "butd", "configs", "coco", "nucleus_sampling.yaml", ) config_path = os.path.abspath(config_path) args = dummy_args(model="butd", dataset="coco") args.opts.append(f"config={config_path}") configuration = Configuration(args) configuration.config.datasets = "coco" configuration.config.model_config.butd.inference.params.sum_threshold = 0.5 configuration.freeze() self.config = configuration.config registry.register("config", self.config)
def test_dataset_configs_for_keys(self): builder_name = registry.mapping["builder_name_mapping"] for builder_key, builder_cls in builder_name.items(): if builder_cls.config_path() is None: warnings.warn( ("Dataset {} has no default configuration defined. " + "Skipping it. Make sure it is intentional" ).format(builder_key)) continue with contextlib.redirect_stdout(StringIO()): args = dummy_args(dataset=builder_key) configuration = Configuration(args) configuration.freeze() config = configuration.get_config() self.assertTrue( builder_key in config.dataset_config, "Key for dataset {} doesn't exists in its configuration". format(builder_key), )
def test_config_overrides(self): config_path = os.path.join( get_mmf_root(), "..", "projects", "m4c", "configs", "textvqa", "defaults.yaml", ) config_path = os.path.abspath(config_path) args = dummy_args(model="m4c", dataset="textvqa") args.opts += [ f"config={config_path}", "training.lr_steps[1]=10000", "dataset_config.textvqa.zoo_requirements[0]=\"test\"" ] configuration = Configuration(args) configuration.freeze() config = configuration.get_config() self.assertEqual(config.training.lr_steps[1], 10000) self.assertEqual(config.dataset_config.textvqa.zoo_requirements[0], "test")