def test_embedding_bwd(custom_ops): # ------------------- PopART -------------------- config = BertConfig(task="SQUAD", vocab_length=9728, micro_batch_size=1, hidden_size=768, sequence_length=128, activation_type='relu', popart_dtype="FLOAT", no_dropout=True, update_embedding_dict=True) popart_model = Bert(config) # Prevent virtualGraph attributes being added to the ops sequence_info = popart.TensorInfo( "UINT32", [config.micro_batch_size * config.sequence_length]) indices = popart_model.builder.addInputTensor(sequence_info) positions = popart_model.builder.addInputTensor(sequence_info) segments = popart_model.builder.addInputTensor(sequence_info) data = { indices: np.random.randint( 0, config.vocab_length, (config.micro_batch_size * config.sequence_length)).astype( np.uint32), positions: np.random.randint( 0, config.max_positional_length, (config.micro_batch_size * config.sequence_length)).astype( np.uint32), segments: np.random.randint( 0, 2, (config.micro_batch_size * config.sequence_length)).astype( np.uint32) } optimizer = popart.ConstSGD(0.01) l1_lambda = 0.1 with popart_model.builder.nameScope("Embedding"): output = popart_model.embedding(indices, positions, segments) l1 = popart_model.builder.aiGraphcore.l1loss( [output], l1_lambda, debugContext="l1LossVal", reduction=popart.ReductionType.Sum) num_reps = 5 proto = popart_model.builder.getModelProto() outputs, post_proto = run_py(proto, data, output, ipus=1, loss=l1, num_reps=num_reps, optimizer=optimizer) # ----------------- PopART -> PyTorch ---------------- proto = onnx.load_model_from_string(proto) inputs = [ data[t].reshape(config.micro_batch_size, config.sequence_length).astype(np.int32) for t in [indices, positions, segments] ] # ------------------- PyTorch ------------------------- torch_model = BertEmbeddings( TorchBertConfig(config.vocab_length, config.hidden_size, max_position_embeddings=config.max_positional_length, layer_norm_eps=config.layer_norm_eps, update_embedding_dict=config.update_embedding_dict)) # Turn off dropout torch_model.eval() copy_weights_to_torch(torch_model, proto, TORCH_TO_ONNX, {}) optim = torch.optim.SGD(torch_model.parameters(), 0.01) for _ in range(num_reps): torch_output = torch_model( *[torch.from_numpy(t).long() for t in inputs]) torch_loss = l1_lambda * torch.norm(torch_output, 1) torch_loss.backward() optim.step() optim.zero_grad() torch_outputs = [torch_output.detach().numpy()] check_tensors(torch_outputs, outputs, margin=7e-6) check_model(torch_model, post_proto, TORCH_TO_ONNX, {}, margin=7e-06)
def test_embedding_bwd(custom_ops): l1_lambda = 0.1 # ------------------- PopART -------------------- builder = popart.Builder(opsets={ "ai.onnx": 9, "ai.onnx.ml": 1, "ai.graphcore": 1 }) config = BertConfig(vocab_length=9728, batch_size=1, hidden_size=768, sequence_length=128, activation_type='relu', popart_dtype="FLOAT", no_dropout=True, custom_ops=['gather']) popart_model = Bert(config, builder=builder) # Prevent virtualGraph attributes being added to the ops. popart_model.embedding_scope = popart_model.device_scope(None, None) popart_model.embedding_split_scope = popart_model.embedding_scope sequence_info = popart.TensorInfo( "UINT32", [config.batch_size * config.sequence_length]) indices = builder.addInputTensor(sequence_info) positions = builder.addInputTensor(sequence_info) segments = builder.addInputTensor(sequence_info) data = { indices: np.random.randint(0, config.vocab_length, (config.batch_size * config.sequence_length)).astype( np.uint32), positions: np.random.randint(0, config.max_positional_length, (config.batch_size * config.sequence_length)).astype( np.uint32), segments: np.random.randint(0, 2, (config.batch_size * config.sequence_length)).astype( np.uint32) } output = popart_model.embedding(indices, positions, segments) proto = builder.getModelProto() l1 = popart.L1Loss(output, "l1LossVal", l1_lambda) optimizer = popart.ConstSGD(0.01) outputs, post_proto = run_py( proto, data, output, loss=l1, optimizer=optimizer, user_options={"enableStochasticRounding": True}) # ----------------- PopART -> PyTorch ---------------- proto = onnx.load_model_from_string(proto) inputs = [ data[t].reshape(config.batch_size, config.sequence_length).astype(np.int32) for t in [indices, positions, segments] ] torch_to_onnx = { "word_embeddings.weight": "Embedding_Dict", "position_embeddings.weight": "Positional_Dict", "token_type_embeddings.weight": "Segment_Dict", "LayerNorm.weight": "Gamma", "LayerNorm.bias": "Beta" } transposed_weights = { "word_embeddings.weight": np.transpose, "position_embeddings.weight": np.transpose, } # ------------------- PyTorch ------------------------- torch_model = BertEmbeddings( TorchBertConfig(config.vocab_length, config.hidden_size, max_position_embeddings=config.max_positional_length, layer_norm_eps=config.layer_norm_eps)) # Turn off dropout torch_model.eval() copy_weights_to_torch(torch_model, proto, torch_to_onnx, transform=transposed_weights) optim = torch.optim.SGD(torch_model.parameters(), 0.01, weight_decay=0.0, momentum=0.0) torch_output = torch_model(*[torch.from_numpy(t).long() for t in inputs]) torch_loss = l1_lambda * torch.norm(torch_output, 1) torch_loss.backward() optim.step() torch_outputs = [torch_output.detach().numpy()] check_tensors(torch_outputs, outputs) check_model(torch_model, post_proto, torch_to_onnx, transform=transposed_weights)
def embedding_bwd(custom_ops, mode, momentum, batch_size, batch_serialization_factor, embedding_serialization_vocab_steps, vocab_length=9728, hidden_size=768): # ------------------- PopART -------------------- config = BertConfig( task="SQUAD", vocab_length=vocab_length, batch_size=batch_size, hidden_size=hidden_size, sequence_length=128, activation_type='relu', popart_dtype="FLOAT", no_dropout=True, update_embedding_dict=True, embedding_serialization_vocab_steps=embedding_serialization_vocab_steps ) popart_model = get_model(config, mode, 'embedding') # Prevent virtualGraph attributes being added to the ops sequence_info = popart.TensorInfo( "UINT32", [config.batch_size * config.sequence_length]) indices = popart_model.builder.addInputTensor(sequence_info) positions = popart_model.builder.addInputTensor(sequence_info) segments = popart_model.builder.addInputTensor(sequence_info) data = { indices: np.random.randint(0, config.vocab_length, (config.batch_size * config.sequence_length)).astype( np.uint32), positions: np.random.randint(0, config.max_positional_length, (config.batch_size * config.sequence_length)).astype( np.uint32), segments: np.random.randint(0, 2, (config.batch_size * config.sequence_length)).astype( np.uint32) } if momentum: optimizer = popart.SGD({ "defaultLearningRate": (0.01, True), "defaultMomentum": (momentum, True), "defaultDampening": (0.0, True), "defaultVelocityScaling": (1.0, True), "lossScaling": (1.0, True), "defaultWeightDecay": (0.0, True) }) else: optimizer = popart.ConstSGD(0.01) l1_lambda = 0.1 if mode == ExecutionMode.PHASED: user_options = { "batchSerializationFactor": batch_serialization_factor, "executionPhases": popart_model.total_execution_phases, } output = popart_model(indices, positions, segments) with popart_model.scope_provider(popart_model.builder, popart_model.norm.scope): l1 = popart_model.builder.aiGraphcore.l1loss( [output], l1_lambda, debugPrefix="l1LossVal", reduction=popart.ReductionType.Sum) else: user_options = {"enableStochasticRounding": True} with popart_model.builder.nameScope("Embedding"): output = popart_model.embedding(indices, positions, segments) l1 = popart_model.builder.aiGraphcore.l1loss( [output], l1_lambda, debugPrefix="l1LossVal", reduction=popart.ReductionType.Sum) num_reps = 5 proto = popart_model.builder.getModelProto() outputs, post_proto = run_py(proto, data, output, ipus=1, loss=l1, num_reps=num_reps, optimizer=optimizer, user_options=user_options, execution_mode=mode) # ----------------- PopART -> PyTorch ---------------- proto = onnx.load_model_from_string(proto) inputs = [ data[t].reshape(config.batch_size, config.sequence_length).astype(np.int32) for t in [indices, positions, segments] ] # ------------------- PyTorch ------------------------- torch_model = BertEmbeddings( TorchBertConfig(config.vocab_length, config.hidden_size, max_position_embeddings=config.max_positional_length, layer_norm_eps=config.layer_norm_eps, update_embedding_dict=config.update_embedding_dict)) # Turn off dropout torch_model.eval() expanded_name_map, remapped_transform_map = expand_torch_to_onnx_map( TORCH_TO_ONNX[mode], config, mode) copy_weights_to_torch(torch_model, proto, expanded_name_map, remapped_transform_map) optim = torch.optim.SGD(torch_model.parameters(), 0.01, weight_decay=0.0, dampening=0.0, momentum=momentum) if momentum > 0.: for group in optim.param_groups: for p in group['params']: optim.state[p]['momentum_buffer'] = p.data * 0 optim.state[p]['exp_avg'] = p.data * 0 optim.state[p]['exp_avg_sq'] = p.data * 0 optim.state[p]['step'] = 0 for _ in range(num_reps): torch_output = torch_model( *[torch.from_numpy(t).long() for t in inputs]) torch_loss = l1_lambda * torch.norm(torch_output, 1) torch_loss.backward() optim.step() optim.zero_grad() torch_outputs = [torch_output.detach().numpy()] check_tensors(torch_outputs, outputs, margin=7e-6) expanded_name_map, remapped_transform_map = expand_torch_to_onnx_map( TORCH_TO_ONNX[mode], config, mode) check_model(torch_model, post_proto, expanded_name_map, remapped_transform_map, margin=7e-06)
def test_embedding(config, phase): # define input indices = np.random.randint( 0, test_config.vocab_size, (test_config.batch_size, test_config.sequence_length)).astype(np.int32) positions = np.reshape( np.arange(test_config.sequence_length), (test_config.batch_size, test_config.sequence_length)).astype(np.int32) segments = np.random.randint( 0, 2, (test_config.batch_size, test_config.sequence_length)).astype(np.int32) inputs = [d for d in [indices, positions, segments]] # build model # PyTorch model torch_config = TorchBertConfig( vocab_size_or_config_json_file=test_config.vocab_size, hidden_size=test_config.hidden_size, hidden_act=test_config.hidden_act, num_attention_heads=test_config.num_attention_heads, hidden_dropout_prob=test_config.hidden_dropout_prob, max_position_embeddings=test_config.max_position_embeddings, type_vocab_size=test_config.type_vocab_size, update_embedding_dict=True, layer_norm_eps=test_config.layer_norm_eps) torch_model = TorchBertEmbeddings(torch_config) torch_model.eval() # TF model tf_config = TFBertConfig( vocab_size=test_config.vocab_size, hidden_size=test_config.hidden_size, hidden_act=test_config.hidden_act, num_attention_heads=test_config.num_attention_heads, max_position_embeddings=test_config.max_position_embeddings, max_predictions_per_seq=test_config.max_predictions_per_seq, hidden_dropout_prob=test_config.hidden_dropout_prob, type_vocab_size=test_config.type_vocab_size, initializer_range=test_config.initializer_range, dtype=test_config.dtype, matmul_serialize_factor=test_config.matmul_serialize_factor, static_mask=False) # farward check if phase == "fwd": torch_outputs = run_fwd_model(inputs, torch_model) with tf.Graph().as_default(): tf_model = TFBertModel(tf_config, is_training=True) with ops.device('cpu'): input_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) position_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) segment_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) cfg = utils.create_ipu_config() cfg = utils.auto_select_ipus(cfg, 1) utils.configure_ipu_system(cfg) utils.move_variable_initialization_to_cpu() with ops.device("/device:IPU:0"): opt = ipu_compiler.compile( tf_model.embeddings_layer, inputs=[input_ids, position_ids, segment_ids]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # copy pytorch weight to tf var_and_init = copy_torch_weights_to_tf( torch_model, tf_model, TF_TO_TORCH, {}, sess) sess.run(var_and_init) # run tf feed feed farward tf_outputs = sess.run( opt, { input_ids: indices, position_ids: positions, segment_ids: segments }) # compare tf output with pytorch output check_tensors(tf_outputs, torch_outputs, margin=1.5e-8) # backward check elif phase == "bwd": l1_lambda = 0.1 base_lr = 0.01 optim = torch.optim.SGD(torch_model.parameters(), base_lr, weight_decay=0.0, momentum=0.0) torch_output = torch_model( *[torch.from_numpy(t).long() for t in inputs]) # pytorch backward torch_loss = l1_lambda * torch.norm(torch_output, 1) torch_loss.backward() # calculate gradients optim.step() # update gradients torch_outputs = [torch_output.detach().numpy()] # TF with tf.Graph().as_default(): tf_model = TFBertModel(tf_config, is_training=True) with ops.device('cpu'): input_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) position_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) segment_ids = tf.placeholder(shape=[ test_config.batch_size, test_config.sequence_length ], dtype=tf.int32) cfg = utils.create_ipu_config() cfg = utils.auto_select_ipus(cfg, 1) utils.configure_ipu_system(cfg) utils.move_variable_initialization_to_cpu() def embedding_graph(input_ids, position_ids, segment_ids): embedding_output = tf_model.embeddings_layer( input_ids, position_ids, segment_ids) l1_loss = l1_lambda * tf.norm(embedding_output, 1) optimizer = tf.train.GradientDescentOptimizer(base_lr) train_step = optimizer.minimize(l1_loss) return embedding_output, l1_loss, train_step with ops.device("/device:IPU:0"): opt = ipu_compiler.compile( embedding_graph, inputs=[input_ids, position_ids, segment_ids]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) var_and_init = copy_torch_weights_to_tf( torch_model, tf_model, TF_TO_TORCH, {}, sess) sess.run(var_and_init) tvars = sess.run({v.name: v for v in tf.trainable_variables()}) print(tvars) tf_outputs, tf_loss = sess.run( opt, { input_ids: indices, position_ids: positions, segment_ids: segments }) # sess.run(opt, {input_ids: indices, position_ids: positions, segment_ids: segments}) # Compare the farward output check_tf_torch_model(sess, torch_model, TF_TO_TORCH, margin=5e-7) check_tensors(torch_outputs, tf_outputs, margin=5e-7) else: raise ValueError( f"`phase` only can be set to [`fwd`, `bwd`] which mean farward or backward respectively." )
def test_embedding_bwd(custom_ops, mode): # ------------------- PopART -------------------- config = BertConfig(task="SQUAD", vocab_length=9728, batch_size=1, hidden_size=768, sequence_length=128, activation_type='relu', popart_dtype="FLOAT", no_dropout=True, update_embedding_dict=False, embedding_serialization_vocab_steps=1) popart_model = get_model(config, mode, 'embedding') # Prevent virtualGraph attributes being added to the ops. sequence_info = popart.TensorInfo( "UINT32", [config.batch_size * config.sequence_length]) indices = popart_model.builder.addInputTensor(sequence_info) positions = popart_model.builder.addInputTensor(sequence_info) segments = popart_model.builder.addInputTensor(sequence_info) data = { indices: np.random.randint(0, config.vocab_length, (config.batch_size * config.sequence_length)).astype( np.uint32), positions: np.random.randint(0, config.max_positional_length, (config.batch_size * config.sequence_length)).astype( np.uint32), segments: np.random.randint(0, 2, (config.batch_size * config.sequence_length)).astype( np.uint32) } optimizer = popart.ConstSGD(0.01) l1_lambda = 0.1 if mode == ExecutionMode.PHASED: user_options = { "batchSerializationFactor": 1, "executionPhases": popart_model.total_execution_phases, } output = popart_model(indices, positions, segments) with popart_model.scope_provider(popart_model.builder, popart_model.norm.scope): l1 = popart_model.builder.aiGraphcore.l1loss( [output], l1_lambda, debugPrefix="l1LossVal", reduction=popart.ReductionType.Sum) else: user_options = {"enableStochasticRounding": True} output = popart_model.embedding(indices, positions, segments) l1 = popart_model.builder.aiGraphcore.l1loss( [output], l1_lambda, debugPrefix="l1LossVal", reduction=popart.ReductionType.Sum) proto = popart_model.builder.getModelProto() outputs, post_proto = run_py(proto, data, output, ipus=1, loss=l1, optimizer=optimizer, user_options=user_options, execution_mode=mode) # ----------------- PopART -> PyTorch ---------------- proto = onnx.load_model_from_string(proto) inputs = [ data[t].reshape(config.batch_size, config.sequence_length).astype(np.int32) for t in [indices, positions, segments] ] # ------------------- PyTorch ------------------------- torch_model = BertEmbeddings( TorchBertConfig(config.vocab_length, config.hidden_size, max_position_embeddings=config.max_positional_length, layer_norm_eps=config.layer_norm_eps)) # Turn off dropout torch_model.eval() copy_weights_to_torch(torch_model, proto, TORCH_TO_ONNX[mode], {}) optim = torch.optim.SGD(torch_model.parameters(), 0.01, weight_decay=0.0, momentum=0.0) torch_output = torch_model(*[torch.from_numpy(t).long() for t in inputs]) torch_loss = l1_lambda * torch.norm(torch_output, 1) torch_loss.backward() optim.step() torch_outputs = [torch_output.detach().numpy()] check_tensors(torch_outputs, outputs, margin=1e-06) check_model(torch_model, post_proto, TORCH_TO_ONNX[mode], {}, margin=1e-06)