def test_clip_variable_by_value(self): """Test clip with Variable""" shape, min_value, max_value = (10, 10), 0.4, 0.6 with nn.variable_scope(self.get_scope()): variable0 = fixture.create_random_variable(shape, dtype='float32') min_variable = fixture.create_constant_variable( shape=[], dtype='float32', value=min_value, name='min_var') max_variable = fixture.create_constant_variable( shape=[], dtype='float32', value=max_value, name='max_var') tensor1 = nn.ops.clip_by_value( variable0, max_value=max_variable, min_value=min_variable) session = nn.Session() session.initialize() val0, val1 = session.run( outputs=[variable0, tensor1], ) expected = np.clip(val0, a_max=max_value, a_min=min_value) np.testing.assert_almost_equal(val1, expected)
def test_mul_variable(self): """Tensor * Variable is correct elementwise""" shape = (3, 5) with nn.variable_scope(self.get_scope()): tensor1 = fixture.create_ones_tensor(shape, dtype='int32') variable = fixture.create_constant_variable(shape, dtype='int32') tensor2 = tensor1 * variable tensor3 = variable * tensor1 session = nn.Session() session.initialize() val1, val2, val3, val0 = session.run( outputs=[tensor1, tensor2, tensor3, variable], ) np.testing.assert_equal(val1 * val0, val2) np.testing.assert_equal(val0 * val1, val3)