def test_save_restore(tmpdir): space = FeatureSpace({ 'a': Feature(DiscreteBox([0, 12])), 'b': Feature(Box((0, 1)), lengthDomain=DiscreteBox((1, 2))) }) sampler = FeatureSampler.simulatedAnnealingSamplerFor(space, sa_params) checkSaveRestore(sampler, tmpdir, iterations=10)
def test_save_restore(tmpdir): space = FeatureSpace({ 'a': Feature(DiscreteBox([0, 12])), 'b': Feature(Box((0, 1)), lengthDomain=DiscreteBox((1, 2))) }) halton_params = DotMap(sample_index=0, bases_skipped=0) sampler = FeatureSampler.haltonSamplerFor(space, halton_params) checkSaveRestore(sampler, tmpdir)
def test_save_restore(tmpdir): space = FeatureSpace({ 'a': Feature(DiscreteBox([0, 12])), 'b': Feature(Box((0, 1)), lengthDomain=DiscreteBox((1, 2))) }) bo_params = DotMap(init_num=2) sampler = FeatureSampler.bayesianOptimizationSamplerFor(space, bo_params) checkSaveRestore(sampler, tmpdir)
def test_save_restore(tmpdir): space = FeatureSpace({ 'a': Feature(DiscreteBox([0, 12])), 'b': Feature(Box((0, 1))), 'c': Feature(Box((0, 1), (-1, 1)), lengthDomain=DiscreteBox((0, 1))) }) ce_params = DotMap(alpha=0.9, thres=0) ce_params.cont.buckets = 5 ce_params.cont.dist = None ce_params.disc.dist = None sampler = FeatureSampler.crossEntropySamplerFor(space, ce_params) checkSaveRestore(sampler, tmpdir, iterations=30)
def test_active_save_restore(tmpdir): sampler = ScenicSampler.fromScenicCode( 'param verifaiSamplerType = "halton"\n' 'ego = Object at VerifaiRange(-1, 1) @ 0', maxIterations=1) checkSaveRestore(sampler, tmpdir)
def test_save_restore(tmpdir): sampler = ScenicSampler.fromScenicCode('ego = Object at Range(-1, 1) @ 0', maxIterations=1) checkSaveRestore(sampler, tmpdir)