예제 #1
0
def test_predictor_save_predictions(matrix_type, predict_setup_args):
    (project_storage, db_engine, model_id) = predict_setup_args
    # if save_predictions is sent as False, don't save
    predictor = Predictor(project_storage.model_storage_engine(),
                          db_engine,
                          save_predictions=False)

    matrix = matrix_creator(index="entity_id")
    metadata = matrix_metadata_creator(end_time=AS_OF_DATE,
                                       matrix_type=matrix_type,
                                       indices=["entity_id"])

    matrix_store = get_matrix_store(project_storage, matrix, metadata)
    train_matrix_columns = matrix.columns[0:-1].tolist()

    predict_proba = predictor.predict(
        model_id,
        matrix_store,
        misc_db_parameters=dict(),
        train_matrix_columns=train_matrix_columns,
    )

    # assert
    # 1. that the returned predictions are of the desired length
    assert len(predict_proba) == 2

    # 2. that the predictions table entries are present and
    # can be linked to the original models
    assert not table_has_data(f"{matrix_type}_predictions", db_engine)
예제 #2
0
def test_predictor_get_train_columns():
    with prepare() as (project_storage, db_engine, model_id):
        predictor = Predictor(project_storage.model_storage_engine(),
                              db_engine)
        train_store = get_matrix_store(
            project_storage=project_storage,
            matrix=matrix_creator(),
            metadata=matrix_metadata_creator(matrix_type="train"),
        )

        # flip the order of some feature columns in the test matrix
        other_order_matrix = matrix_creator()
        order = other_order_matrix.columns.tolist()
        order[0], order[1] = order[1], order[0]
        other_order_matrix = other_order_matrix[order]
        test_store = get_matrix_store(
            project_storage=project_storage,
            matrix=other_order_matrix,
            metadata=matrix_metadata_creator(matrix_type="test"),
        )

        # Runs the same test for training and testing predictions
        for store, mat_type in zip((train_store, test_store),
                                   ("train", "test")):
            predict_proba = predictor.predict(
                model_id,
                store,
                misc_db_parameters=dict(),
                train_matrix_columns=train_store.columns(),
            )
            # assert
            # 1. that we calculated predictions
            assert len(predict_proba) > 0

            # 2. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row
                for row in db_engine.execute("""select entity_id, as_of_date
                from {}_results.predictions
                join model_metadata.models using (model_id)""".format(
                    mat_type, mat_type))
            ]
            assert len(records) > 0
예제 #3
0
def test_predictor_retrieve():
    with prepare() as (project_storage, db_engine, model_id):
        predictor = Predictor(project_storage.model_storage_engine(),
                              db_engine,
                              replace=False)

        # create prediction set
        matrix = matrix_creator()
        metadata = matrix_metadata_creator()
        matrix_store = get_matrix_store(project_storage, matrix, metadata)

        predict_proba = predictor.predict(
            model_id,
            matrix_store,
            misc_db_parameters=dict(),
            train_matrix_columns=matrix.columns[0:-1].tolist())

        # When run again, the predictions retrieved from the database
        # should match.
        #
        # Some trickiness here. Let's explain:
        #
        # If we are not careful, retrieving predictions from the database and
        # presenting them as a numpy array can result in a bad ordering,
        # since the given matrix may not be 'ordered' by some criteria
        # that can be easily represented by an ORDER BY clause.
        #
        # It will sometimes work, because without ORDER BY you will get
        # it back in the table's physical order, which unless something has
        # happened to the table will be the order you inserted it,
        # which could very well be the order in the matrix.
        # So it's not a bug that would necessarily immediately show itself,
        # but when it does go wrong your scores will be garbage.
        #
        # So we simulate a table order mutation that can happen over time:
        # Remove the first row and put it at the end.
        # If the Predictor doesn't explicitly reorder the results, this will fail
        # Only running on TestPrediction because TrainPrediction behaves the exact same way
        reorder_session = sessionmaker(bind=db_engine)()
        obj = reorder_session.query(TestPrediction).first()
        reorder_session.delete(obj)
        reorder_session.commit()

        make_transient(obj)
        reorder_session = sessionmaker(bind=db_engine)()
        reorder_session.add(obj)
        reorder_session.commit()

        predictor.load_model = Mock()
        new_predict_proba = predictor.predict(
            model_id,
            matrix_store,
            misc_db_parameters=dict(),
            train_matrix_columns=matrix.columns[0:-1].tolist())
        assert_array_equal(new_predict_proba, predict_proba)
        assert not predictor.load_model.called
예제 #4
0
def test_calculate_and_save():
    with rig_engines() as (db_engine, project_storage):
        train_store = get_matrix_store(
            project_storage,
            matrix_creator(),
            matrix_metadata_creator(matrix_type='train'),
        )
        test_store = get_matrix_store(
            project_storage,
            matrix_creator(),
            matrix_metadata_creator(matrix_type='test'),
        )
        calculator = IndividualImportanceCalculator(db_engine,
                                                    methods=['sample'],
                                                    replace=False)
        # given a trained model
        # and a test matrix
        _, model_id = \
            fake_trained_model(
                db_engine,
                train_matrix_uuid=train_store.uuid
            )
        # i expect to be able to call calculate and save
        calculator.calculate_and_save_all_methods_and_dates(
            model_id, test_store)
        # and find individual importances in the results schema afterwards
        records = [
            row for row in db_engine.execute('''select entity_id, as_of_date
            from test_results.individual_importances
            join model_metadata.models using (model_id)''')
        ]
        assert len(records) > 0
        # and that when run again, has the same result
        calculator.calculate_and_save_all_methods_and_dates(
            model_id, test_store)
        new_records = [
            row for row in db_engine.execute('''select entity_id, as_of_date
            from test_results.individual_importances
            join model_metadata.models using (model_id)''')
        ]
        assert len(records) == len(new_records)
        assert records == new_records
예제 #5
0
def test_predictor_needs_predictions(matrix_type, predict_setup_args):
    (project_storage, db_engine, model_id) = predict_setup_args
    # if not all of the predictions for the given model id and matrix are present in the db,
    # needs_predictions should return true. else, false
    predictor = Predictor(project_storage.model_storage_engine(), db_engine)

    matrix = matrix_creator(index="entity_id")
    metadata = matrix_metadata_creator(end_time=AS_OF_DATE,
                                       matrix_type=matrix_type,
                                       indices=["entity_id"])

    matrix_store = get_matrix_store(project_storage, matrix, metadata)
    train_matrix_columns = matrix.columns[0:-1].tolist()

    # we haven't done anything yet, this should definitely need predictions
    assert predictor.needs_predictions(matrix_store, model_id)
    predictor.predict(
        model_id,
        matrix_store,
        misc_db_parameters=dict(),
        train_matrix_columns=train_matrix_columns,
    )
    # now that predictions have been made, this should no longer need predictions
    assert not predictor.needs_predictions(matrix_store, model_id)
예제 #6
0
def test_integration():
    with rig_engines() as (db_engine, project_storage):
        train_store = get_matrix_store(
            project_storage, matrix_creator(),
            matrix_metadata_creator(matrix_type='train'))
        as_of_dates = [datetime.date(2016, 12, 21), datetime.date(2017, 1, 21)]

        test_stores = []
        for as_of_date in as_of_dates:
            matrix_store = get_matrix_store(
                project_storage,
                pandas.DataFrame.from_dict({
                    'entity_id': [3],
                    'feature_one': [8],
                    'feature_two': [5],
                    'label': [0]
                }).set_index('entity_id'),
                matrix_metadata_creator(end_time=as_of_date,
                                        indices=['entity_id']))
            test_stores.append(matrix_store)

        model_storage_engine = ModelStorageEngine(project_storage)

        experiment_hash = save_experiment_and_get_hash({}, db_engine)
        # instantiate pipeline objects
        trainer = ModelTrainer(
            experiment_hash=experiment_hash,
            model_storage_engine=model_storage_engine,
            db_engine=db_engine,
        )
        predictor = Predictor(model_storage_engine, db_engine)
        model_evaluator = ModelEvaluator([{
            'metrics': ['precision@'],
            'thresholds': {
                'top_n': [5]
            }
        }], [{}], db_engine)

        # run the pipeline
        grid_config = {
            'sklearn.linear_model.LogisticRegression': {
                'C': [0.00001, 0.0001],
                'penalty': ['l1', 'l2'],
                'random_state': [2193]
            }
        }
        model_ids = trainer.train_models(grid_config=grid_config,
                                         misc_db_parameters=dict(),
                                         matrix_store=train_store)

        for model_id in model_ids:
            for as_of_date, test_store in zip(as_of_dates, test_stores):
                predictions_proba = predictor.predict(
                    model_id,
                    test_store,
                    misc_db_parameters=dict(),
                    train_matrix_columns=['feature_one', 'feature_two'])

                model_evaluator.evaluate(
                    predictions_proba,
                    test_store,
                    model_id,
                )

        # assert
        # 1. that the predictions table entries are present and
        # can be linked to the original models
        records = [
            row for row in db_engine.execute(
                '''select entity_id, model_id, as_of_date
            from test_results.predictions
            join model_metadata.models using (model_id)
            order by 3, 2''')
        ]
        assert records == [
            (3, 1, datetime.datetime(2016, 12, 21)),
            (3, 2, datetime.datetime(2016, 12, 21)),
            (3, 3, datetime.datetime(2016, 12, 21)),
            (3, 4, datetime.datetime(2016, 12, 21)),
            (3, 1, datetime.datetime(2017, 1, 21)),
            (3, 2, datetime.datetime(2017, 1, 21)),
            (3, 3, datetime.datetime(2017, 1, 21)),
            (3, 4, datetime.datetime(2017, 1, 21)),
        ]

        # that evaluations are there
        records = [
            row for row in db_engine.execute('''
                select model_id, evaluation_start_time, metric, parameter
                from test_results.evaluations order by 2, 1''')
        ]
        assert records == [
            (1, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (2, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (3, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (4, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
            (1, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (2, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (3, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            (4, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
        ]
예제 #7
0
def test_predictor_entity_index():
    with prepare() as (project_storage, db_engine, model_id):
        predictor = Predictor(project_storage.model_storage_engine(),
                              db_engine)

        # Runs the same test for training and testing predictions
        for mat_type in ("train", "test"):
            matrix = matrix_creator(index="entity_id")
            metadata = matrix_metadata_creator(end_time=AS_OF_DATE,
                                               matrix_type=mat_type,
                                               indices=["entity_id"])

            matrix_store = get_matrix_store(project_storage, matrix, metadata)
            train_matrix_columns = matrix.columns[0:-1].tolist()

            predict_proba = predictor.predict(
                model_id,
                matrix_store,
                misc_db_parameters=dict(),
                train_matrix_columns=train_matrix_columns,
            )

            # assert
            # 1. that the returned predictions are of the desired length
            assert len(predict_proba) == 2

            # 2. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row
                for row in db_engine.execute("""select entity_id, as_of_date
                from {}_results.predictions
                join model_metadata.models using (model_id)""".format(
                    mat_type, mat_type))
            ]
            assert len(records) == 2

            # 3. that the contained as_of_dates match what we sent in
            for record in records:
                assert record[1].date() == AS_OF_DATE

            # 4. that the entity ids match the given dataset
            assert sorted([record[0] for record in records]) == [1, 2]

        # 5. running with same model_id, different as of date
        # then with same as of date only replaces the records
        # with the same date

        # Runs the same test for training and testing predictions
        for mat_type in ("train", "test"):
            new_matrix = matrix_creator(index="entity_id")
            new_metadata = matrix_metadata_creator(
                end_time=AS_OF_DATE + datetime.timedelta(days=1),
                matrix_type=mat_type,
                indices=["entity_id"],
            )
            new_matrix_store = get_matrix_store(project_storage, new_matrix,
                                                new_metadata)

            predictor.predict(
                model_id,
                new_matrix_store,
                misc_db_parameters=dict(),
                train_matrix_columns=train_matrix_columns,
            )
            predictor.predict(
                model_id,
                matrix_store,
                misc_db_parameters=dict(),
                train_matrix_columns=train_matrix_columns,
            )
            records = [
                row
                for row in db_engine.execute("""select entity_id, as_of_date
                from {}_results.predictions
                join model_metadata.models using (model_id)""".format(
                    mat_type, mat_type))
            ]
            assert len(records) == 4

        # 6. That we can delete the model when done prediction on it
        predictor.delete_model(model_id)
        assert predictor.load_model(model_id) is None
예제 #8
0
def test_integration():
    with rig_engines() as (db_engine, project_storage):
        train_store = get_matrix_store(
            project_storage,
            matrix_creator(),
            matrix_metadata_creator(matrix_type="train"),
        )
        as_of_dates = [datetime.date(2016, 12, 21), datetime.date(2017, 1, 21)]

        test_stores = []
        for as_of_date in as_of_dates:
            matrix_store = get_matrix_store(
                project_storage,
                pandas.DataFrame.from_dict({
                    "entity_id": [3],
                    "feature_one": [8],
                    "feature_two": [5],
                    "label": [0],
                }).set_index("entity_id"),
                matrix_metadata_creator(end_time=as_of_date,
                                        indices=["entity_id"]),
            )
            test_stores.append(matrix_store)

        model_storage_engine = ModelStorageEngine(project_storage)

        experiment_hash = save_experiment_and_get_hash({}, db_engine)
        # instantiate pipeline objects
        trainer = ModelTrainer(
            experiment_hash=experiment_hash,
            model_storage_engine=model_storage_engine,
            db_engine=db_engine,
        )
        predictor = Predictor(model_storage_engine, db_engine)
        model_evaluator = ModelEvaluator([{
            "metrics": ["precision@"],
            "thresholds": {
                "top_n": [5]
            }
        }], [{}], db_engine)

        # run the pipeline
        grid_config = {
            "sklearn.linear_model.LogisticRegression": {
                "C": [0.00001, 0.0001],
                "penalty": ["l1", "l2"],
                "random_state": [2193],
            }
        }
        model_ids = trainer.train_models(grid_config=grid_config,
                                         misc_db_parameters=dict(),
                                         matrix_store=train_store)

        for model_id in model_ids:
            for as_of_date, test_store in zip(as_of_dates, test_stores):
                predictions_proba = predictor.predict(
                    model_id,
                    test_store,
                    misc_db_parameters=dict(),
                    train_matrix_columns=["feature_one", "feature_two"],
                )

                model_evaluator.evaluate(predictions_proba, test_store,
                                         model_id)

        # assert
        # 1. that the predictions table entries are present and
        # can be linked to the original models
        records = [
            row for row in db_engine.execute(
                """select entity_id, model_id, as_of_date
            from test_results.predictions
            join model_metadata.models using (model_id)
            order by 3, 2""")
        ]
        assert records == [
            (3, 1, datetime.datetime(2016, 12, 21)),
            (3, 2, datetime.datetime(2016, 12, 21)),
            (3, 3, datetime.datetime(2016, 12, 21)),
            (3, 4, datetime.datetime(2016, 12, 21)),
            (3, 1, datetime.datetime(2017, 1, 21)),
            (3, 2, datetime.datetime(2017, 1, 21)),
            (3, 3, datetime.datetime(2017, 1, 21)),
            (3, 4, datetime.datetime(2017, 1, 21)),
        ]

        # that evaluations are there
        records = [
            row for row in db_engine.execute("""
                select model_id, evaluation_start_time, metric, parameter
                from test_results.evaluations order by 2, 1""")
        ]
        assert records == [
            (1, datetime.datetime(2016, 12, 21), "precision@", "5_abs"),
            (2, datetime.datetime(2016, 12, 21), "precision@", "5_abs"),
            (3, datetime.datetime(2016, 12, 21), "precision@", "5_abs"),
            (4, datetime.datetime(2016, 12, 21), "precision@", "5_abs"),
            (1, datetime.datetime(2017, 1, 21), "precision@", "5_abs"),
            (2, datetime.datetime(2017, 1, 21), "precision@", "5_abs"),
            (3, datetime.datetime(2017, 1, 21), "precision@", "5_abs"),
            (4, datetime.datetime(2017, 1, 21), "precision@", "5_abs"),
        ]