def test_deterministic(space: Space, n: int, base_seed: int): """Tests the batched spaces are deterministic by using a copied version""" # Copy the spaces and check that the np_random are not reference equal space_a = space space_a.seed(base_seed) space_b = copy.deepcopy(space_a) assert_rng_equal(space_a.np_random, space_b.np_random) assert space_a.np_random is not space_b.np_random # Batch the spaces and check that the np_random are not reference equal space_a_batched = batch_space(space_a, n) space_b_batched = batch_space(space_b, n) assert_rng_equal(space_a_batched.np_random, space_b_batched.np_random) assert space_a_batched.np_random is not space_b_batched.np_random # Create that the batched space is not reference equal to the origin spaces assert space_a.np_random is not space_a_batched.np_random # Check that batched space a and b random number generator are not effected by the original space space_a.sample() space_a_batched_sample = space_a_batched.sample() space_b_batched_sample = space_b_batched.sample() for a_sample, b_sample in zip( iterate(space_a_batched, space_a_batched_sample), iterate(space_b_batched, space_b_batched_sample), ): if isinstance(a_sample, tuple): assert len(a_sample) == len(b_sample) for a_subsample, b_subsample in zip(a_sample, b_sample): assert_array_equal(a_subsample, b_subsample) else: assert_array_equal(a_sample, b_sample)
def test_sync_vector_env_seed(): env = make_env("BipedalWalker-v3", seed=123)() sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)]) assert_rng_equal(env.action_space.np_random, sync_vector_env.action_space.np_random) for _ in range(100): env_action = env.action_space.sample() vector_action = sync_vector_env.action_space.sample() assert np.all(env_action == vector_action)
def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3): """Check that for all environments, the sync vector envs produce the same action samples using the same seeds""" env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)]) env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)]) assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random) for _ in range(100): env_1_samples = env_1.action_space.sample() env_2_samples = env_2.action_space.sample() assert np.all(env_1_samples == env_2_samples)
def test_rng_different_at_each_index(space: Space, n: int, base_seed: int): """ Tests that the rng values produced at each index are different to prevent if the rng is copied for each subspace """ space.seed(base_seed) batched_space = batch_space(space, n) assert space.np_random is not batched_space.np_random assert_rng_equal(space.np_random, batched_space.np_random) batched_sample = batched_space.sample() sample = list(iterate(batched_space, batched_sample)) assert not all(np.all(element == sample[0]) for element in sample), sample