def main(): #read in data and parse files = ['data/iris.csv'] ###### EDIT ###### train_df = pd.read_csv(files[0], header=None) ###### EDIT ###### file_output = "output/output_iris_new.txt" ###### EDIT ###### #map classifier as binary train_df[4] = train_df[4].map({ 'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 1 }).astype(int) ###### EDIT ###### #separate models X_train = train_df.drop(4, axis=1) ###### EDIT ###### Y_train = train_df[4] ###### EDIT ###### X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, train_size=0.75, test_size=0.25) output = [0] * iters #print("------Feature Selection Complete------") for i in range(iters): models = [] for j in range(0, 15): ###### EDIT ###### #try out a new classifier pipeline1 = Pipeline([ ('dtc', DecisionTreeClassifier(max_features=random.randint(1, 4), max_depth=random.randint(1, 200), random_state=random.randint(1, 5000)) ) ###### EDIT ###### ]) models.append(pipeline1) output[i] = {} # Function calls to create and test ensembles ###### EDIT NAMES AND PROGRESS ###### output[i]['super_dtc'] = add_superlearner('super_dtc', models, X_train, Y_train, X_test, Y_test) print("--------------- 10% ---------------") output[i]['sub_dtc'] = add_subsemble('sub_dtc', models, X_train, Y_train, X_test, Y_test) print("--------------- 20% ---------------") output[i]['blend_dtc'] = add_blend('blend_dtc', models, X_train, Y_train, X_test, Y_test) print("--------------- 30% ---------------") models = [] for j in range(0, 15): ###### EDIT ###### #try out a new classifier pipeline1 = Pipeline([ ('knc', KNeighborsClassifier(n_neighbors=random.randint(1, 20)) ) ###### EDIT ###### ]) models.append(pipeline1) ###### EDIT NAMES AND PROGRESS ###### output[i]['super_knc'] = add_superlearner('super_knc', models, X_train, Y_train, X_test, Y_test) print("--------------- 40% ---------------") output[i]['sub_knc'] = add_subsemble('sub_knc', models, X_train, Y_train, X_test, Y_test) print("--------------- 50% ---------------") output[i]['blend_knc'] = add_blend('blend_knc', models, X_train, Y_train, X_test, Y_test) print("--------------- 60% ---------------") t = Texttable() average_acc = {} average_time = {} t.add_row([ 'Dataset', 'Ensemble', 'Meta Classifier', 'Accuracy Score', 'Runtime' ]) for i in range(iters): for key, value in output[i].iteritems(): t.add_row([ key, output[i][key]["Ensemble"], output[i][key]["Meta_Classifier"], output[i][key]["Accuracy_Score"], output[i][key]["Runtime"] ]) if (i == 0): average_acc[key] = output[i][key]["Accuracy_Score"] average_time[key] = output[i][key]["Runtime"] else: average_acc[ key] = average_acc[key] + output[i][key]["Accuracy_Score"] average_time[ key] = average_time[key] + output[i][key]["Runtime"] for key, value in average_acc.iteritems(): t.add_row( ["Average", key, "SVC", value / iters, average_time[key] / iters]) print(t.draw()) if (file_output != None): print("Saving output to: {}".format(file_output)) orig_stdout = sys.stdout f = open(file_output, 'w') sys.stdout = f print(t.draw()) sys.stdout = orig_stdout f.close()
def print_data_training(decoded, actions): t = Texttable(max_width=130) t.add_rows([["Decoded", "Action"]]) for decode, action in zip(decoded, actions): t.add_row([str(decode), str(action)]) print(t.draw())
if neighbors_id1 in killneighbors or neighbors_id2 in killneighbors: continue killneighbors.append(neighbors_id1) killneighbors.append(neighbors_id2) for item in user_rate_dic[neighbors_id2]: if item[2] not in killneighbors: killneighbors.append(item[2]) #且加到宿舍,第三个 break for item2 in user_rate_dic[item[2]]: #找第三个的邻居 if item2[2] not in killneighbors: killneighbors.append(item2[2]) #todo 加到宿舍,第四个 break table = Texttable() table.set_deco(Texttable.HEADER) table.set_cols_dtype(['t', 't', 't', 't']) # automatic table.set_cols_align(["l", "l", "l", "l"]) #print ("id1:",neighbors_id1) #print ("id2:",neighbors_id2) rows.append([neighbors_id1, neighbors_id2, item[2], item2[2]]) table.add_rows(rows) #取下一个贪心最大值 print(table.draw()) #all_neighbors_dis.sort(reverse=True) #user_2=[ i[1] for i in all_neighbors_dis] #user_3=[ i[2] for i in all_neighbors_dis] #print (all_neighbors_dis)
def do_compare(input, output): count = 0 sum_percent = 0 bigger = [] not_converted = [] table = [['File', 'Original', 'Transcoded', 'Percent']] total_i = 0 total_o = 0 for i, o in get_input_output(input, output): name = os.path.basename(i) if os.path.exists(o): i_size = os.path.getsize(i) o_size = os.path.getsize(o) percent = o_size / float(i_size) * 100 if percent < 15: not_converted.append('{} (Too small, {:2f}%)'.format( name, percent)) elif o_size > i_size: bigger.append((name, o, i_size, o_size, percent)) else: count += 1 total_i += i_size total_o += o_size sum_percent += percent table.append([ name, sizeof_fmt(i_size), sizeof_fmt(o_size), _f_percent(percent) ]) else: not_converted.append(name) if count > 0: table.append(['', '', '', '']) per = total_o / float(total_i) * 100 table.append([ 'Total', sizeof_fmt(total_i), sizeof_fmt(total_o), _f_percent(per) ]) avg = sum_percent / count table.append(['Average', '', '', _f_percent(avg)]) t = Texttable(max_width=0) t.set_deco(Texttable.VLINES | Texttable.HEADER) t.set_cols_align(['l', 'r', 'r', 'r']) t.add_rows(table) print(t.draw()) print('{} Larger than original'.format(len(bigger))) for i, o, i_size, o_size, percent in bigger: print('{}: {} -> {} ({:.2f}%)'.format(i, sizeof_fmt(i_size), sizeof_fmt(o_size), percent)) if len(not_converted) > 0: print('Not Converted:') for i in not_converted: print(' {}'.format(i))
# Lambda function for resetting terminal window "reset for Raspberry Pi, cls for PC" clear = lambda: os.system('reset') #clear = lambda: os.system('cls') clear() # Lists hold names of those who want leftovers. Set to be wiped after the reset time: reset_time. lunch_list = [] dinner_list = [] initialize = 0 last_message_id = '' # Table creation and initialization lunch_output_table = Texttable() dinner_output_table = Texttable() # Extra spaces to allow for large names to not be on multiple lines dinner_output_table.add_row([[' Dinner ']]) lunch_output_table.add_row([[' Lunch ']]) lunch_output_table.set_cols_align("c") dinner_output_table.set_cols_align("c") # Print Banner print(text.Text("LATE PLATE BOT", color='0000ff', shadow=True, skew=5)) print(lunch_output_table.draw()) print(dinner_output_table.draw()) # Used to make sure fake names are not put onto the lists. unadjusted_member_list = open(member_path, "r").read().splitlines()
def __init__(self, rowsArray): self.__table = Texttable() self.__rows_array = rowsArray self.__table.add_rows(rowsArray, header=False)
for collab in r: sys.stdout.write("%s (%d)\n" % (collab['login'], collab['contributions'])) if not collab['login'] in t_collab: t_collab[collab['login']] = 0 t_collab[collab['login']] = t_collab[ collab['login']] + collab['contributions'] else: sys.stdout.write("-\n") sys.stdout.write("\n") print( colored('[+] %d contributors found, reading profiles...\n' % len(t_collab), 'green')) tab = Texttable(300) tab.header( ['Contributions', 'Profile', 'Name', 'Email', 'Company', 'Public repos']) # tab.set_max_width( 100 ) def grabUserHtmlLight(ghaccount, login): url = 'https://github.com/' + login try: r = requests.get(url, timeout=5) except Exception as e: print(colored("[-] error occurred: %s" % e, 'red')) return False if not 'Not Found' in r.text:
def select_movies(): clear() result1= pyfiglet.figlet_format("Select Movie: ".center(40)) print(result1) movies = {} # Storing the contents of the movies file in movies dictionary with open('movies.csv', 'r') as read_file: csv_reader = list(csv.reader(read_file)) for line in csv_reader: if line == []: continue movies[line[0]] = {} movies[line[0]]['name'] = line[0] movies[line[0]]['Rating'] = line[1] movies[line[0]]['genre'] = line[2] movies[line[0]]['language'] = line[3] movies[line[0]]['release'] = line[4] movies[line[0]]['length'] = line[5] movies[line[0]]['advisory'] = line[6] final = [['Movies']] add = [] print('Movies Now Showing'.title()) print() for dictmovie in movies.keys(): add.append(dictmovie.title()) final.append(add) add = [] Cinema = Texttable() Cinema.add_rows(final) print(Cinema.draw()) # Enter the movie and check if the movie is present in the movies dictionary movie = input('Enter your movie: ').lower() while movie not in movies.keys(): movie = input('Enter valid movie name!!!: ') movie = movie.upper() print(pyfiglet.figlet_format(movie.center(40))) self.movie = movie.lower() final = [] add = [] # Displaying the movies information table for dictmovie in movies.values(): if dictmovie['name'] == movie.lower(): for attribute, info in dictmovie.items(): if attribute != 'location' and attribute != 'name': add.append(attribute) add.append(info) final.append(add) add = [] Cinema = Texttable() Cinema.add_rows(final) print(Cinema.draw()) # Asks the user if they want to book tickets for the movie # if user enters n/no the loop continues choice = input(('Book tickets? (y/n): ')).lower() while choice not in ['y','n','yes','no']: choice = input(('Enter a valid choice: ')).lower() return choice
def payment(self): def otp(): self.email = input('Enter your email Address: ') number = input('Enter your mobile number: ') while len(number) != 10 and number not in ['7702167946']: number = input('Input valid mobile number: ') number = '+91' + number otp = random.randrange(1000,9999,2) otp = str(otp) message = f'Book My Cinema never calls you asking for OTP. OTP is confidential. For security reasons, do not share this OTP with anyone. Your OTP is {otp} ' client = SinchSMS('660367af-18ff-42ca-89d2-8856dcba78dd','fijjTkW5jkuaCARwJlGnKA==') print("Sending '%s' to %s" % ('OTP', number)) response = client.send_message(number, message) message_id = response['messageId'] response = client.check_status(message_id) while response['status'] != 'Successful': time.sleep(1) response = client.check_status(message_id) u_otp = input('Enter the 4 digit otp: ') while u_otp != otp: u_otp = input('Enter valid 4 digit otp!!: ') print('OTP matched!!') print("\033[1;31;40m") result1= pyfiglet.figlet_format("Booking summary".center(0)) print(result1) print("\033[1;37;40m") format_list = list(_table_formats.keys()) table = [["Movie", self.movie],["Theatre", self.theatre], ["Date",self.date],["Time",self.time],["seats",self.selected_seats], ["Total", self.total]] print(tabulate(table, tablefmt='grid')) print('\033[1;31;40mAmount Payable - ' + str(self.total) + '\033[1;37;40m') result1= pyfiglet.figlet_format("Payment Options".center(0)) print(result1) format_list = list(_table_formats.keys()) table = [["1", "Credit/Debit card"],["2", "Mobile wallet"],["3","UPI"]] headers = ['Press', 'Payment method'] print(tabulate(table, headers,tablefmt='pipe')) choice = input() while choice not in ['1', '2', '3']: choice = input('Enter valid payment method: ') clear() # Credit card block: if choice == '1': today = date.today() result1= pyfiglet.figlet_format("Credit Card".center(0)) print(result1) card_num = input('Enter card number: ') while len(card_num) != 16: card_num = input('Enter valid card number!!: ') card_name = input('Name on the card: ') print('Enter expiry date: ') check = list(range(1, 13)) check = [str(i) for i in check] month = input('Enter month: ') while month not in check: month = input('Enter valid month: ') month = int(month) check = ['2019', '2020', '2021', '2022', '2023', '2024'] year = input('Enter year: ') while year not in check: year = input('Enter valid year: ') year = int(year) while month <= today.month and year == today.year: print('Enter valid expiry date: ') check = list(range(1, 13)) check = [str(i) for i in check] month = input('Enter month: ') while month not in check: month = input('Enter valid month: ') month = int(month) check = ['2019', '2020', '2021', '2022', '2023', '2024'] year = input('Enter year: ') while year not in check: year = input('Enter valid year: ') year = int(year) cvv = input('Enter cvv: ') while len(cvv) != 3: cvv = input('Enter cvv: ') clear() otp() clear() print("Your transaction is underway, Don't refresh: ") time.sleep(5) print('Transaction Sucessfull!!') # Mobile wallet block elif choice == '2': result1= pyfiglet.figlet_format("Mobile Wallet".center(0)) print(result1) format_list = list(_table_formats.keys()) table = [["1", "PayTm"],["2", "PayPal"], ["3","FreeCharge"]] headers = ['Press', 'Mobile wallet'] print(tabulate(table, headers,tablefmt='pipe')) choice = input() while choice not in ['1', '2', '3']: choice = input('Enter valid mobile wallet: ') print('Redirecting...') time.sleep(5) clear() if choice == '1': result1 = pyfiglet.figlet_format("PayTm".center(40)) print(result1) elif choice == '2': result1 = pyfiglet.figlet_format("PayPal".center(40)) print(result1) elif choice == '3': result1 = pyfiglet.figlet_format("FreeCharge".center(40)) print(result1) print(f'Book my Cinema order Rs {self.total}') choice = input('Proceed? (y/n) ').lower() while choice not in ['y','n','yes','no']: choice = input('Enter valid choice: ').lower() if choice in ['n', 'no']: return choice otp() print('Your transaction is underway, Don\'t refresh') time.sleep(5) print('Your Transaction is Sucessfull!! ') # UPI Block elif choice == '3': result1= pyfiglet.figlet_format("UPI".center(40)) print(result1) options = ['PayTm', 'Amazon Pay','PhonePe','BHIM'] print('Enter upi payment option ') upi = Texttable() upi.add_rows([['ID', 'Options'],['1','PayTm'],['2','Amazon Pay'],['3','PhonePe'],['4','BHIM']]) print(upi.draw()) upi = input() while upi not in ['1','2','3','4']: upi = input('Enter valid choice: ') mode = options[int(upi) - 1] result1 = pyfiglet.figlet_format(mode.center(40)) print(result1) UPI = input('Enter UPI pin: ') while len(UPI) != 6: UPI = input('Enter valid UPI pin: ') print('Enter Bank ID: ') Bank = Texttable() Bank.add_rows([['ID', 'Bank'],['1','HDFC Bank'],['2','Axis Bank'],['3','SBI Bank'],['4','Yes Bank'],['5','IDFC Bank']]) print(Bank.draw()) bank = input() while bank not in ['1','2','3','4','5']: bank = input('Enter valid choice: ') otp() print('Your transaction is underway, Don\'t refresh') time.sleep(5) print('Your Transaction is Sucessfull!! ')
def select_time(self): result1= pyfiglet.figlet_format("Select Time".center(40)) print(result1) d = date.today() from datetime import time from datetime import datetime # Times is a dictionary to store movie times times = {} count = 1 now = datetime.now().time() # Reads the time.csv file to read time corresponding to the movie and the theater with open('time.csv', 'r') as read_file: csv_reader = csv.reader(read_file, delimiter = ',') for line in csv_reader: if line[0] == self.theatre and line[1] == self.movie: for i in range(len(line)): if i not in [0,1]: ti = datetime.strptime(line[i],'%H:%M:%S').time() times[str(count)] = ti count += 1 read_file.close() # If the movie is in the current day # Then enter the available time in the dictionary times_edit if self.date == d: times_edit = {} count = 1 final = [['ID', 'Time']] add = [] for index, time in times.items(): if time > now: times_edit[str(count)] = time add.append(count) add.append(time) final.append(add) add = [] count += 1 times = times_edit # Else show all the time else: count = 1 final = [['ID', 'Time']] add = [] for index, time in times.items(): add.append(count) add.append(time) final.append(add) count += 1 add = [] Time = Texttable() Time.add_rows(final) print(Time.draw()) user_time = input(f'Enter your time (1-{len(times)}): ') check = list(range(1, len(times) + 1)) check = [str(i) for i in check] # To check if the user entered the correct option while user_time not in check: user_time = input(f'Enter time from (1-{len(times)}): ') # To convert the time and date entered by the user into string self.time = str(times[user_time]) self.date = str(self.date) print(f'Selected movie time - {user_time}') choice = input('continue? (y/n): ') while choice not in ['y','n','yes','no']: choice = input(('Enter valid choice: ')).lower() return choice
def food_menu(self): clear() meal = input('Do you wanna a grab a bite (y/n)?: ') while meal not in ['y','n','yes','no']: meal = input(('Enter valid choice!!: ')).lower() if meal in ['n', 'no']: return if meal in ['y', 'yes']: from texttable import Texttable def read_food(data, sub): prices = [] with open('food.csv', 'r') as read_file: csv_reader = csv.reader(read_file) for line in csv_reader: if line[0] == sub: for i in range(len(line)): if i != 0: prices.append(line[i]) data.append(prices) prices = [] temp = data[0] del data[0] data.sort() k = list(data for data,_ in itertools.groupby(data)) data = k data.insert(0, temp) return data return data result1 = pyfiglet.figlet_format('Food Menu'.center(40)) print(result1) data = [['Item', 'Small', 'Medium', 'Large']] final = read_food(data, 'Iced-Tea') price = 0 print("Iced-Tea:-") IcedTea = Texttable() IcedTea.add_rows(final) print(IcedTea.draw()) data = [['Item', 'Small', 'Medium', 'Large']] final = read_food(data, 'Cold Coffee') i=1 while (i<=4): i=i+1 print() print('Cold Coffee:-') from texttable import Texttable ColdCoffee = Texttable() ColdCoffee.add_rows(final) print(ColdCoffee.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Price']] final = read_food(data, 'Aerated Drinks (200 ml)') print ("Aerated Drinks (200 ml):-") from texttable import Texttable AeratedDrinks = Texttable() AeratedDrinks.add_rows(final) print(AeratedDrinks.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Price']] final = read_food(data, 'Mineral Water') print ("Mineral Water:-") from texttable import Texttable MineralWater = Texttable() MineralWater.add_rows(final) print(MineralWater.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Price']] final = read_food(data, 'Hot Beverages (80 ml)') print ("Hot Beverages (80 ml):-") from texttable import Texttable HotBeverages = Texttable() HotBeverages.add_rows(final) print(HotBeverages.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Small', 'Medium', 'Large']] final = read_food(data, 'Popcorn') print ("Popcorn:-") from texttable import Texttable Popcorn = Texttable() Popcorn.add_rows(final) print(Popcorn.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Price']] final = read_food(data, 'Appetizers') print ("Appetizers:-") from texttable import Texttable Appetizers = Texttable() Appetizers.add_rows(final) print(Appetizers.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Small', 'Medium', 'Large']] final = read_food(data, 'Rolls') print ("Rolls:-") from texttable import Texttable Rolls = Texttable() Rolls.add_rows(final) print(Rolls.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Price']] final = read_food(data, 'Special Combos') print ("Special Combos:-") from texttable import Texttable SpecialCombos = Texttable() SpecialCombos.add_rows(final) print(SpecialCombos.draw()) i=1 while (i<=4): i=i+1 print() data = [['Item', 'Single Scoop', 'Double Scoop', 'Cone']] final = read_food(data, 'Ice Creams') print ("Ice Creams:-") from texttable import Texttable IceCream = Texttable() IceCream.add_rows(final) print(IceCream.draw()) choice = 'y' while choice in ['y', 'yes']: pre = False while pre == False: sub = input('Enter submenu: ') with open('food.csv', 'r') as read_file: csv_reader = csv.reader(read_file) for line in csv_reader: if line == []: break if line[0] == sub: pre = True break if pre == True: break pre = False while pre == False: item = input('\nEnter item from ' + sub + ': ') with open('food.csv', 'r') as read_file: csv_reader = csv.reader(read_file) for line in csv_reader: if line == []: break if line[0] == sub: if line[1] == item: quantity = input('Enter quantity ') while quantity not in ['0','1', '2', '3', '4', '5', '6', '7']: quantity = input('Control yourself and enter quantity : ') quantity = int(quantity) pre = True if sub in ['Iced-Tea','Cold Coffee','Popcorn','Rolls']: Tab = Texttable() Tab.add_rows([['Press', 'Option'], ['1','To order Small'],['2', 'To order Medium'],['3', 'To order Large']]) print(Tab.draw()) choice = input() while choice not in ['1','2','3']: choice = input('Enter 1 or 2 or 3: ') if choice == '1': add = int(line[2]) * quantity price += add break elif choice == '2': add = int(line[3]) * quantity price += add break elif choice == '3': add = int(line[4]) * quantity price += add break elif sub in ['Ice Creams']: Tab = Texttable() Tab.add_rows([['Press', 'Option'], ['1','To order Single Scoop'],['2', 'To order Double Scoop'],['3', 'To order Cone']]) print(Tab.draw()) choice = input() while choice not in ['1','2','3']: choice = input('Enter 1 or 2 or 3: ') if choice == '1': add = int(line[2]) * quantity price += add break elif choice == '2': add = int(line[3]) * quantity price += add break elif choice == '3': add = int(line[4]) * quantity price += add break else: add = int(line[2]) * quantity price += add break pre = True if pre == True: break self.food_item.append(item) self.food_price += price self.total += self.food_price choice = input('Order more? (y/n): ') while choice not in ['y','n','yes','no']: choice = input(('Enter valid choice: ')).lower() if choice in ['n', 'no']: print(self.food_item) break pre = False
def rrt(lang, module, Input_): table = kakunin(module) data = module.Open("./config/setting.conf") datas = data.read().splitlines()[0] data.close() datas = datas.split(",") datal = [] for i in range(2, len(datas), 2): datal.append((datas[i + 1], datas[i])) if len(datal) == 0: k = "" while k != "\n": cuitools.box(lang.lang("エラー"), [ lang.lang("簡単サッカー実行リストにチームが設定されていないのでこの機能は使用できません。"), lang.lang("settingコマンドでチームの追加ができます。詳しくはsettingコマンドを確認してください。"), lang.lang("Enterキーを押して続行...") ]) k = cuitools.Key() elif yes_no_dialog( title=lang.lang("cszp 簡単サッカー実行プログラム") + "/" + lang.lang("設定確認"), text=table.draw() + lang.lang("\nEnterキーを押して続行...")).run(): k = "" csv_save = False ok = False ver = open("./version") v = ver.read() ver.close() kantan_list = list(map(lambda n: n[1], datal)) kantan_cmd = list(map(lambda n: n[0], datal)) select = 0 selector = [] synch = False while k != "\n" or not ok: cuitools.reset() print("\033[1;1H\033[0m\033[38;5;172m") figlet("cszp " + v) if select == -1: print("\033[1m\033[38;5;9m> \033[38;5;10m" + lang.lang("前ページへ戻る(ホーム)") + "\033[0m\n") else: print(" \033[38;5;10m" + lang.lang("前ページへ戻る(ホーム)") + "\033[0m\n") print("\033[38;5;12m" + lang.lang("総当たり戦をさせるチームを選択してください。")) for i, j in enumerate(kantan_list): if i in selector: if select == i: print( "\033[1m\033[38;5;9m>\033[38;5;11m* \033[38;5;10m" + j + "\033[0m") else: print("\033[38;5;11m * \033[38;5;10m" + j + "\033[0m") elif select == i: print("\033[1m\033[38;5;9m> \033[38;5;10m" + j + "\033[0m") else: print(" \033[38;5;10m" + j + "\033[0m") print("") if select == len(kantan_list): print("\033[1m\033[38;5;9m> \033[38;5;14m" + lang.lang("synchモードでの実行") + ":\033[0m\033[4m\033[38;5;14m" + "No" * ((synch - 1) * -1) + "Yes" * synch + "\033[0m") else: print(" \033[38;5;14m" + lang.lang("synchモードでの実行") + ":\033[0m\033[4m\033[38;5;14m" + "No" * ((synch - 1) * -1) + "Yes" * synch + "\033[0m") if select == len(kantan_list) + 1: if csv_save is False: print("\033[1m\033[38;5;9m> \033[38;5;11m" + lang.lang("csvログの保存") + ":\033[0m\033[4m\033[" "38;5;14mNo\033[0m") else: print("\033[1m\033[38;5;9m> \033[38;5;11m" + lang.lang("csvログの保存") + ":\033[0m\033[4m\033[38;5;14m" + csv_save + "\033[0m") else: if csv_save is False: print(" \033[38;5;11m" + lang.lang("csvログの保存") + ":\033[0m\033[4m\033[38;5;14mNo\033[0m") else: print(" \033[38;5;11m" + lang.lang("csvログの保存") + ":\033[0m\033[4m\033[38;5;14m" + csv_save + "\033[0m") if select == len(kantan_list) + 2 and len(selector) > 1: print("\033[1m\033[38;5;9m> \033[38;5;10m" + lang.lang("サッカーを実行") + "\033[0m") elif len(selector) < 2: print(" \033[38;5;243m" + lang.lang("サッカーを実行") + "\033[0m") else: print(" \033[38;5;10m" + lang.lang("サッカーを実行") + "\033[0m") table = [] tmp = [""] for i in selector: tmp.append(kantan_list[i]) table.append(tmp) for i in selector: table.append([kantan_list[i]] + [""] * len(selector)) print(Texttable().add_rows(table).draw()) k = cuitools.Key() if k == "\x1b": k = cuitools.Key() if k == "[": k = cuitools.Key() if k == "B": if len(kantan_list) + 2 > select: select += 1 if len(kantan_list) + 2 == select and len( selector) < 2: select -= 1 elif k == "A": if -1 < select: select -= 1 if (k == " " or k == "\n") and select == -1: break elif (k == " " or k == "\n") and select == len(kantan_list) + 2: ok = True break elif (k == " " or k == "\n") and select == len(kantan_list) + 1: tmp = yesno(lang.lang("選択"), [lang.lang("csvログを保存しますか?")]) if tmp == 0: tmp = Input() tmp = tmp.Input("filename") if len(tmp.split(".")) == 1: tmp += ".csv" csv_save = tmp else: csv_save = False elif (k == " " or k == "\n") and select == len(kantan_list): tmp = yesno(lang.lang("選択"), [lang.lang("synchモードで実行しますか?")]) if tmp == 0: synch = True else: synch = False elif (k == " " or k == "\n") and select > -1: if select in selector: for i, j in enumerate(selector): if j == select: del selector[i] break else: selector.append(select) if ok: table = [] tmp = [""] for i in selector: tmp.append(kantan_list[i]) table.append(tmp) for i in selector: table.append([kantan_list[i]] + [""] * len(selector)) for i in range(len(table)): if i != 0: table[i][i] = "N/A" tmp = [] for i in selector: for j in selector: if kantan_cmd[i] != kantan_cmd[j] and not [ kantan_cmd[j], kantan_cmd[i] ] in tmp: tmp.append([kantan_cmd[i], kantan_cmd[j]]) tmp2 = [] for i in selector: for j in selector: if kantan_cmd[i] != kantan_cmd[j] and not [ kantan_list[j], kantan_list[i] ] in tmp2: tmp2.append([kantan_list[i], kantan_list[j]]) # print(tmp) data = module.Open("./config/config.conf") datas = data.read().splitlines() data.close() datas = datas[0].split(",") arg = "server::auto_mode=true server::kick_off_wait=20 server::game_over_wait=20 " \ "server::connect_wait=2000 server::game_log_dir=" + datas[7] + " server::text_log_dir=" + datas[ 7] + " server::game_logging=" + ( "true" * (datas[3] == "on") + "false" * (datas[3] == "off")) + " server::text_logging=" + ( "true" * (datas[3] == "on") + "false" * (datas[3] == "off")) # arg += " server::nr_normal_halfs=1 server::nr_extra_halfs=0 server::penalty_shoot_outs=0 " \ # "server::half_time=10" s = [0, 1] results = [] for i, j in zip(tmp, tmp2): cuitools.reset() print("\033[1;1H\033[0m\033[38;5;172m") figlet("cszp " + v) print("\033[0m") print(Texttable().add_rows(table).draw() + "\n" + "━" * 50) try: _ = soccer([i[0], i[1], arg], lang, 1, module, [False, False, False, synch], Input_, False, False, False) except KeyboardInterrupt: break result = _.get_result() if len(result) == 0: table[s[0] + 1][s[1] + 1] = "Error" else: tmp3 = result[0] tmp3[1] = table[s[0] + 1][0] tmp3[2] = table[0][s[1] + 1] results.append(tmp3) table[s[0] + 1][s[1] + 1] = str(result[0][3]) + "-" + str(result[0][4]) s[1] += 1 if s[1] > len(selector) - 1: s[0] += 1 s[1] = 0 tmp3 = list(map(lambda n: n + 1, s)) while [j[1], j[0]] != [table[tmp3[0]][0], table[0][tmp3[1]]]: print([table[tmp3[0]][0], table[0][tmp3[1]]], [j[1], j[0]]) tmp3[1] += 1 if tmp3[1] > len(selector): tmp3[0] += 1 tmp3[1] = 0 if len(result) == 0: table[tmp3[0]][tmp3[1]] = "Error" else: table[tmp3[0]][tmp3[1]] = str(result[0][4]) + "-" + str( result[0][3]) while s[1] <= s[0]: s[1] += 1 if s[1] > len(selector): s[0] += 1 s[1] = 0 if csv_save is not False: with open(datas[7] + "/" + csv_save, "w") as f: f.write("\n".join( list(map(lambda n: ",".join(map(str, n)), results)))) cuitools.reset() print("\033[1;1H\033[0m\033[38;5;172m") figlet("cszp " + v) print("\033[0m") print("\033[1m\033[38;5;11m" + lang.lang("集計結果") + "\033[0m\n" + "━" * 50 + "\n" + Texttable().add_rows(table).draw()) tmp = [] for i in results: if not i[1] in list(map(lambda n: n[0], tmp)): tmp.append([i[1], [0, 0, 0]]) for j, k in enumerate(tmp): if k[0] == i[1]: break if i[3] > i[4]: tmp[j][1][0] += 1 elif i[3] < i[4]: tmp[j][1][1] += 1 else: tmp[j][1][2] += 1 if not i[2] in list(map(lambda n: n[0], tmp)): tmp.append([i[2], [0, 0, 0]]) for j, k in enumerate(tmp): if k[0] == i[2]: break if i[4] > i[3]: tmp[j][1][0] += 1 elif i[4] < i[3]: tmp[j][1][1] += 1 else: tmp[j][1][2] += 1 table = [["", "W", "D", "L", "Total"]] for i in tmp: table.append( [i[0], i[1][0], i[1][2], i[1][1], i[1][0] - i[1][1]]) print("\n" + "━" * 50 + "\n" + Texttable().add_rows(table).draw()) Input_.Input(lang.lang("Enterキーを押して続行..."), dot=False)
def display_late_info(self): late_cats = ["1 - 15", "16 - 30", "31 - 60", "61 - 90", "91 - 120"] # create dict late_dict = {} current_count = 0 total_late_count = 0 for cat in late_cats: late_dict[cat] = { "count": 0, "outstanding principal": 0, "ratings": [] } # {'1 - 15': {'count': 0, 'outstanding principal': 0, 'ratings': []}, # '16 - 30': {'count': 0, 'outstanding principal': 0, 'ratings': []}, # '31 - 60': {'count': 0, 'outstanding principal': 0, 'ratings': []}, # '61 - 90': {'count': 0, 'outstanding principal': 0, 'ratings': []}, # '91 - 120': {'count': 0, 'outstanding principal': 0, 'ratings': []}} notes_data = self.notes.pull_notes_table() for note in notes_data: if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] == 0: current_count += 1 if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] > 0 and note['days_past_due'] < 16: late_dict["1 - 15"]["count"] += 1 late_dict["1 - 15"]["outstanding principal"] += note[ 'principal_balance_pro_rata_share'] late_dict["1 - 15"]["ratings"].append(note['prosper_rating']) if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] > 15 and note['days_past_due'] < 31: late_dict["16 - 30"]["count"] += 1 late_dict["16 - 30"]["outstanding principal"] += note[ 'principal_balance_pro_rata_share'] late_dict["16 - 30"]["ratings"].append(note['prosper_rating']) if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] > 30 and note['days_past_due'] < 61: late_dict["31 - 60"]["count"] += 1 late_dict["31 - 60"]["outstanding principal"] += note[ 'principal_balance_pro_rata_share'] late_dict["31 - 60"]["ratings"].append(note['prosper_rating']) if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] > 60 and note['days_past_due'] < 91: late_dict["61 - 90"]["count"] += 1 late_dict["61 - 90"]["outstanding principal"] += note[ 'principal_balance_pro_rata_share'] late_dict["61 - 90"]["ratings"].append(note['prosper_rating']) if note['note_status_description'] == "CURRENT" and note[ 'days_past_due'] > 90: late_dict["91 - 120"]["count"] += 1 late_dict["91 - 120"]["outstanding principal"] += note[ 'principal_balance_pro_rata_share'] late_dict["91 - 120"]["ratings"].append(note['prosper_rating']) table = Texttable() table.add_row([ "Late Category", "Count", "Outstanding Principal", "Comprised Notes" ]) for d in late_dict: table.add_row([ d, late_dict[d]["count"], late_dict[d]["outstanding principal"], late_dict[d]["ratings"] ]) total_late_count += late_dict[d]["count"] self.message += "\nLate Note Data:" self.message += "\nCurrent notes late is {num}% of all notes\n".format( num=round((total_late_count / (total_late_count + current_count) * 100), 2)) self.message += table.draw() self.message += "\n"
def display_default_rate_tracking(self): table = Texttable() table.add_row([ "Rating", "Expected", "Baseline", "Actual", "Diff", "Diff Baseline", "Late" ]) projected_default_dict, projected_default_dict_prosper, actual_default_dict, actual_default_rates_dict, actual_late_dict = self.notes.default_rate_tracking( ) total_expected_defaulted_v1 = 0 total_expected_defaulted_prosper = 0 total_actual_num = 0 total_late = 0 self.message += "\n" late_dict = {} for k in sorted(projected_default_dict): try: actual_num = actual_default_dict[k] except KeyError: actual_num = 0 try: # self.message += "Rating {k}: expected defaulted notes for v1 is {num}, with prosper expected of {prosper_num}, actual is {actual_num} (Including {late_num} late)".format(k=k, num=round(projected_default_dict[k], 4), prosper_num=round(projected_default_dict_prosper[k], 4), actual_num=actual_num, late_num=actual_late_dict[k]) table.add_row([ k, round(projected_default_dict[k], 4), round(projected_default_dict_prosper[k], 4), actual_num, # "actual is {actual_num} (Including {late_num} late)".format(actual_num=actual_num, late_num=actual_late_dict[k]), round(projected_default_dict[k], 4) - actual_num, round(projected_default_dict_prosper[k], 4) - actual_num, actual_late_dict[k] ]) total_late += actual_late_dict[k] except KeyError: # self.message += "Rating {k}: expected defaulted notes for v1 is {num}, with prosper expected of {prosper_num}, actual is {actual_num} (Including {late_num} late)".format(k=k, num=round(projected_default_dict[k], 4), prosper_num=round(projected_default_dict_prosper[k], 4), actual_num=actual_num, late_num=0) table.add_row([ k, round(projected_default_dict[k], 4), round(projected_default_dict_prosper[k], 4), actual_num, # "actual is {actual_num} (Including {late_num} late)".format(actual_num=actual_num, late_num=0), round(projected_default_dict[k], 4) - actual_num, round(projected_default_dict_prosper[k], 4) - actual_num, 0 ]) # self.message += "\n" total_expected_defaulted_v1 += projected_default_dict[k] total_expected_defaulted_prosper += projected_default_dict_prosper[ k] total_actual_num += actual_num table.add_row([ "Total", round(total_expected_defaulted_v1, 4), round(total_expected_defaulted_prosper, 4), total_actual_num, round(total_expected_defaulted_v1, 4) - total_actual_num, round(total_expected_defaulted_prosper, 4) - total_actual_num, total_late ]) self.message += "Default And Late Rate Tracking:\n" self.message += table.draw() self.message += "\n"
def similarity_text(self, idx, distance_matrix, data): """ Use indici API and Fuzzy Search to select the answer for the Customer idx: the index of the text we're looking for similar questions to (data[idx] corresponds to the actual text we care about) distance_matrix: an m by n matrix that stores the distance between document m and document n at distance_matrix[m][n] data: a flat list of text data """ t = Texttable() t.set_cols_width([50, 20]) # these are the indexes of the texts that are most similar to the text at data[idx] # note that this list of 10 elements contains the index of text that we're comparing things to at idx 0 sorted_distance_idxs = np.argsort( distance_matrix[idx])[:5] # EX: [252, 102, 239, ...] #Fuzzy Search Dictionary Index fuzzy_ratio_array = sorted_distance_idxs.tolist() fuzzy_ratio_array.pop(0) print("fuzzy ratio array : %r" % fuzzy_ratio_array) # this is the index of the text that is most similar to the query (index 0) most_sim_idx = sorted_distance_idxs[1] print("sorted distance idx : %r" % most_sim_idx) # header for texttable t.add_rows([['Text', 'Similarity']]) print(t.draw()) # set the variable that will hold our matching FAQ faq_match = None for similar_idx in sorted_distance_idxs: # actual text data for display datum = data[similar_idx] # distance in cosine space from our text example to the similar text example distance = distance_matrix[idx][similar_idx] # how similar that text data is to our input example similarity = 1 - distance # add the text + the floating point similarity value to our Texttable() object for display t.add_rows([[datum, str(round(similarity, 2))]]) print(t.draw()) # set a confidence threshold if similar_idx == most_sim_idx and similarity >= 0.75: faq_match = data[most_sim_idx] elif similar_idx == most_sim_idx and similarity >= 0.4: fuzzy_search_dict = {} fuzzy_max_similarity_index = [] for idx in fuzzy_ratio_array: value = fuzz.ratio(data[0], data[idx]) fuzzy_search_dict[idx] = value fuzzy_max_similarity_index = max(fuzzy_search_dict.items(), key=lambda x: x[1])[0] faq_match = data[fuzzy_max_similarity_index] else: sorry = "Sorry, I'm not sure how to respond. Let me find someone who can help you." # print the appropriate answer to the FAQ, or bring in a human to respond # TODO if faq_match is not None: return faqs[faq_match] else: return sorry
def PredictAndShowResult(classifiers, test_data): y_test = test_data['authors'] X_test = test_data['texts'] for classifier in classifiers: clf = classifier['clf'] predicted = cross_val_predict(clf, X_test, y_test, cv=10) #predicted = clf.predict(X_test) Macro_P = ( metrics.precision_score(y_test, predicted, average='macro') * 100) A = (metrics.accuracy_score(y_test, predicted) * 100) Macro_R = (metrics.recall_score(y_test, predicted, average='macro') * 100) Macro_F = (metrics.f1_score(y_test, predicted, average='macro') * 100) Micro_P = ( metrics.precision_score(y_test, predicted, average='micro') * 100) Micro_R = (metrics.recall_score(y_test, predicted, average='micro') * 100) Micro_F = (metrics.f1_score(y_test, predicted, average='micro') * 100) fpr, tpr, thresholds = metrics.roc_curve(y_test, predicted, pos_label=16) AUC = (metrics.auc(fpr, tpr) * 100) ######################### Presenting results ################################################### table = Texttable() print(classifier['name'] + ' measures: ') table.add_rows([['Measure', 'Result'], ['ACCURACY ', A], ['Error Rate', 100 - A], ['The MACRO Precission ', Macro_P], ['The MACRO Recall ', Macro_R], ['The MACRO FScore ', Macro_F], ['The MICRO Precission ', Micro_P], ['The MICRO Recall ', Micro_R], ['The MICRO FScore ', Micro_F], ['Area Under Curve', AUC]]) print(table.draw()) print('\n Detailed classification report for ' + classifier['name'] + ':') print(classification_report(y_test, predicted)) #################################### Confusion Matrix ########################################## def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) cmRound = [] print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True authors') plt.xlabel('Predicted authors') # Compute confusion matrix conf_m = confusion_matrix(y_test, predicted) np.set_printoptions(precision=2) # Plot normalized confusion matrix for emotions plt.figure() plot_confusion_matrix(conf_m, classes=set(y_test_old), title=features_name + '. Classifier name: ' + classifier['name']) # fname = features_name+'_'+classifier['name'] #fpath = 'D:/Sasha/subversion/trunk/AuthorshipAttributionRussianTexts/results/conf_matrix/'+fname #to save in file plt.show()
if args.query: query = args.query check = args.check maxresults = args.maxresults if maxresults < 100: maxresults = 100 maxwidth = args.maxwidth inputfile = False if args.file: inputfile = args.file t = Texttable(max_width=maxwidth) malwaredomains = 'http://mirror1.malwaredomains.com/files/justdomains' expireddomainsqueryurl = 'https://www.expireddomains.net/domain-name-search' timestamp = time.strftime("%Y%m%d_%H%M%S") useragent = 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0)' headers = {'User-Agent': useragent} requests.packages.urllib3.disable_warnings() # HTTP Session container, used to manage cookies, session tokens and other session information s = requests.Session() data = []
items = { } #1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0 f = open(item, "r", encoding="ISO-8859-1") movie_content = f.readlines() f.close() for movie in movie_content: movieLine = movie.split("|") items[int(movieLine[0])] = movieLine[1:] return items #主程序 if __name__ == '__main__': itemTemp = getMovieList(r"./ml-100k/u.item") #获取电影列表 fileTemp = readFile(r"./ml-100k/u.data") #读取文件 user_dic, movie_dic = createDict(fileTemp) #创建字典 user_id = 66 movieTemp = recommondation(user_id, user_dic, 80) #对电影排序 rows = [] table = Texttable() #创建表格并显示 table.set_deco(Texttable.HEADER) table.set_cols_dtype(['t', 'f', 'a']) table.set_cols_align(["l", "l", "l"]) rows.append(["user name", "recommondation_movie", "from userid"]) for i in movieTemp: rows.append([user_id, itemTemp[i[0]][0], ""]) table.add_rows(rows) print(table.draw())
i += 1 if i == 1000: break print('Saving training_set to', training_set_filename) data = np.array(data) np.save(training_set_filename, data) with open(images_filename, 'wb') as output: pickle.dump(images, output, pickle.HIGHEST_PROTOCOL) print('Predicting the cameras based on the images') labels = logistic.predict(data) predictions = dict(zip(images, labels)) print('Prediction list') text_table = Texttable() text_table.add_row(['Image', 'Predicted', 'Actual', 'Correct ?']) right_classifier_counter = 0 for image in images: images_filename = image.split("/")[-1] actual_camera = image.split("/")[-2] predicted_camera = predictions[image] text_table.add_row([ images_filename, predicted_camera, actual_camera, predicted_camera == actual_camera ]) if actual_camera == predicted_camera: right_classifier_counter += 1 print(text_table.draw()) print('Accuracy:', right_classifier_counter / len(images))
def __str__(self): res = Texttable() for line in self.__cells: s = " ".join([str(int(value)) for value in line]) + "\n" res.add_row(s) return res.draw()
def main(domain, threads, savefile, ports, silent, verbose, enable_bruteforce, engines): bruteforce_list = set() search_list = set() if is_windows: subdomains_queue = list() else: subdomains_queue = multiprocessing.Manager().list() # Check Bruteforce Status if enable_bruteforce or enable_bruteforce is None: enable_bruteforce = True # Validate domain domain_check = re.compile( "^(http|https)?[a-zA-Z0-9]+([\-\.]{1}[a-zA-Z0-9]+)*\.[a-zA-Z]{2,}$") if not domain_check.match(domain): if not silent: print(R + "Error: Please enter a valid domain" + W) return [] if not domain.startswith('http://') or not domain.startswith('https://'): domain = 'http://' + domain parsed_domain = urlparse.urlparse(domain) if not silent: print(B + "[-] Enumerating subdomains now for %s" % parsed_domain.netloc + W) if verbose and not silent: print( Y + "[-] verbosity is enabled, will show the subdomains results in realtime" + W) supported_engines = { 'baidu': BaiduEnum, 'yahoo': YahooEnum, 'google': GoogleEnum, 'bing': BingEnum, 'ask': AskEnum, 'netcraft': NetcraftEnum, 'dnsdumpster': DNSdumpster, 'virustotal': Virustotal, 'threatcrowd': ThreatCrowd, 'ssl': CrtSearch, 'passivedns': PassiveDNS } chosenEnums = [] if engines is None: chosenEnums = [ BaiduEnum, YahooEnum, GoogleEnum, BingEnum, AskEnum, NetcraftEnum, DNSdumpster, Virustotal, ThreatCrowd, CrtSearch, PassiveDNS ] else: engines = engines.split(',') for engine in engines: if engine.lower() in supported_engines: chosenEnums.append(supported_engines[engine.lower()]) # Start the engines enumeration enums = [ enum(domain, [], q=subdomains_queue, silent=silent, verbose=verbose) for enum in chosenEnums ] for enum in enums: enum.start() for enum in enums: enum.join() subdomains = set(subdomains_queue) for subdomain in subdomains: search_list.add(subdomain) if enable_bruteforce: if not silent: print(G + "[-] Starting bruteforce module now using subbrute.." + W) record_type = False path_to_file = os.path.dirname(os.path.realpath(__file__)) subs = os.path.join(path_to_file, 'subbrute', 'names.txt') resolvers = os.path.join(path_to_file, 'subbrute', 'resolvers.txt') process_count = threads output = False json_output = False bruteforce_list = subbrute.print_target(parsed_domain.netloc, record_type, subs, resolvers, process_count, output, json_output, search_list, verbose) subdomains = search_list.union(bruteforce_list) if subdomains: subdomains = sorted( subdomains, key=functools.cmp_to_key(subdomain_cmp), ) if savefile: write_file(savefile, subdomains) if not silent: print(Y + "[-] Total Unique Subdomains Found: %s" % len(subdomains) + W) if ports: if not silent: print(G + "[-] Start port scan now for the following ports: %s%s" % (Y, ports) + W) ports = ports.split(',') pscan = portscan(subdomains, ports) pscan.run() elif not silent: table = Texttable() table.set_deco(Texttable.HEADER) for subdomain in subdomains: try: geo = geolite2.lookup(socket.gethostbyname(subdomain)) if geo: table.add_rows( [["Subdomain", "IP Address", "Location"], [ subdomain, socket.gethostbyname(subdomain), str(geo.country) + " - " + str(geo.location) ]]) else: table.add_rows( [["Subdomain", "IP Address", "Location"], [subdomain, socket.gethostbyname(subdomain), "-"]]) except socket.gaierror: table.add_rows([["Subdomain", "IP Address", "Location"], [subdomain, "-", "-"]]) print(G + table.draw() + W) return subdomains
def main(): # Enter folder name with video files. location = input('Directory path: ') # length of new video in s length = int(input('Length of sequence (in s): ')) video_files = [] file_names = [] print("\nOutput written to output.txt") f = open("output.txt", "w") table = Texttable() table.add_row(["Clip Position", "Clip Name", "Start Point", "End Point", "Total Duration"]) for root, dirs, files in os.walk(location): for file in files: if file.endswith(FILE_EXTENSION): video_files.append(os.path.join(root, file)) file_names.append(file) count = 0 while length > 0: file = random.choice(video_files) index = video_files.index(file) if file.endswith(FILE_EXTENSION): # Video length clip = VideoFileClip(file) frame_rate = clip.fps # random frame start_frame = random.randint(1, int(frame_rate)) end_frame = random.randint(1, int(frame_rate)) # Start timestamp of clip a = random.uniform(0, clip.duration) b = random.uniform(0, clip.duration) start = 0 end = 0 if a < b: start = a end = b else: end = a end = b duration = end - start start_string = f'{datetime.timedelta(seconds=round(start))}:{start_frame}' end_string = f'{datetime.timedelta(seconds=round(end))}:{end_frame}' table.add_row([count + 1, file_names[index], start_string, end_string, datetime.timedelta(seconds=round(duration))]) count += 1 length -= duration print(file_names) f.write(table.draw())
def report(env, filters): '''Summarise the dependency tree of the current project''' lCmdHeaders = ['path', 'flags', 'package', 'component', 'lib'] lFilterFormat = re.compile('([^=]*)=(.*)') lFilterFormatErrors = [] lFieldNotFound = [] lFilters = [] # print ( filters ) for f in filters: m = lFilterFormat.match(f) if not m: lFilterFormatErrors.append(f) continue if m.group(1) not in lCmdHeaders: lFieldNotFound.append(m.group(1)) continue try: i = lCmdHeaders.index(m.group(1)) r = re.compile(m.group(2)) lFilters.append((i, r)) except RuntimeError as e: lFilterFormatErrors.append(f) if lFilterFormatErrors: raise click.ClickException( "Filter syntax errors: " + ' '.join(['\'' + e + '\'' for e in lFilterFormatErrors])) if lFieldNotFound: raise click.ClickException( "Filter syntax errors: fields not found {}. Expected one of {}". format( ', '.join("'" + s + "'" for s in lFieldNotFound), ', '.join(("'" + s + "'" for s in lCmdHeaders)), )) # return lParser = env.depParser secho('* Variables', fg='blue') printDictTable(lParser.vars, aHeader=False) echo() secho('* Parsed commands', fg='blue') lPrepend = re.compile('(^|\n)') for k in lParser.commands: echo(' + {0} ({1})'.format(k, len(lParser.commands[k]))) if not lParser.commands[k]: echo() continue lCmdTable = Texttable(max_width=0) lCmdTable.header(lCmdHeaders) lCmdTable.set_deco(Texttable.HEADER | Texttable.BORDER) lCmdTable.set_chars(['-', '|', '+', '-']) for lCmd in lParser.commands[k]: # print(lCmd) # lCmdTable.add_row([str(lCmd)]) lRow = [ relpath(lCmd.FilePath, env.srcdir), ','.join(lCmd.flags()), lCmd.Package, lCmd.Component, # lCmd.Map, lCmd.Lib, ] if lFilters and not all( [rxp.match(lRow[i]) for i, rxp in lFilters]): continue lCmdTable.add_row(lRow) echo(lPrepend.sub(r'\g<1> ', lCmdTable.draw())) echo() secho('Resolved packages & components', fg='blue') lString = '' # lString += '+----------------------------------+\n' # lString += '| Resolved packages & components |\n' # lString += '+----------------------------------+\n' lString += 'packages: ' + ' '.join(iterkeys(lParser.components)) + '\n' lString += 'components:\n' for pkg in sorted(lParser.components): lString += u'* %s (%d)\n' % (pkg, len(lParser.components[pkg])) lSortCmp = sorted(lParser.components[pkg]) for cmp in lSortCmp[:-1]: lString += u' ├── ' + str(cmp) + '\n' lString += u' └── ' + str(lSortCmp[-1]) + '\n' echo(lString) if lParser.missing: lString = '' if lParser.missingPackages: secho('Missing packages:', fg='red') echo(' '.join(list(lParser.missingPackages))) # ------ lCNF = lParser.missingComponents if lCNF: secho('Missing components:', fg='red') for pkg in sorted(lCNF): lString += '+ %s (%d)\n' % (pkg, len(lCNF[pkg])) lSortCNF = sorted(lCNF[pkg]) for cmp in lSortCNF[:-1]: lString += u' ├──' + str(cmp) + '\n' lString += u' └──' + str(lSortCNF[-1]) + '\n' # ------ # ------ echo(lString) lFNF = lParser.missingFiles if lFNF: secho('Missing files:', fg='red') lFNFTable = Texttable(max_width=0) lFNFTable.header( ['path expression', 'package', 'component', 'included by']) lFNFTable.set_deco(Texttable.HEADER | Texttable.BORDER) for pkg in sorted(lFNF): lCmps = lFNF[pkg] for cmp in sorted(lCmps): lPathExps = lCmps[cmp] for pathexp in sorted(lPathExps): lFNFTable.add_row([ relpath(pathexp, env.srcdir), pkg, cmp, '\n'.join([ relpath(src, env.srcdir) for src in lPathExps[pathexp] ]), ]) echo(lPrepend.sub(r'\g<1> ', lFNFTable.draw()))
def get_table_printer() -> Texttable: t = Texttable(max_width=130) t.set_deco(Texttable.BORDER | Texttable.HEADER | Texttable.VLINES) t.set_precision(2) return t
def main(): # Метод проверки разностей средних уровней print(5 * "=", "average difference", 5 * "=") # USD 2014 # https://net.dn.ua/money/stat.php?valute=12&year=2014&mon=0 usd = [7.99, 8.65, 9.91, 11.63, 11.40, 11.74, 12.90, 13.02, 12.95, 14.64] # GBP 2014 # https://net.dn.ua/money/stat.php?valute=8&year=2014&mon=0 gbp = [ 13.16, 14.31, 16.48, 19.46, 19.17, 20.03, 21.58, 21.27, 20.84, 23.15 ] data = gbp arr1 = data[:len(data) // 2] print("arr1", arr1) arr2 = data[len(data) // 2:] print("arr2", arr2) average1 = round(sum(arr1) / len(arr1), 2) print("average1", average1) average2 = round(sum(arr2) / len(arr2), 2) print("average2", average2) dispersion1 = dispersion(arr1, average1) print("dispersion1", dispersion1) dispersion2 = dispersion(arr2, average2) print("dispersion2", dispersion2) f_calc = round( dispersion1 / dispersion2 if dispersion1 > dispersion2 else dispersion2 / dispersion1, 2) assert (len(arr1) - 1 == 4) assert (len(arr2) - 1 == 4) f_tabl = 6.39 # because P <= 0.05 and len(arr1) - 1 == 4 and len(arr2) - 1 = 4 print("f_calc", f_calc) print("f_tabl", f_tabl) is_accepted = f_calc < f_tabl print("the hypothesis of homogeneity of dispersion is accepted:", is_accepted) if is_accepted: t_criterion_calc = round( student_t_criterion(average1, average2, dispersion1, dispersion2, len(arr1), len(arr2)), 2) print("t_criterion_calc:", t_criterion_calc) assert (len(arr1) + len(arr2) - 2 == 8) t_criterion_tabl = 2.31 # because P <= 0.05 and len(arr1) + len(arr2) - 2 == 8 print("t_criterion_tabl:", t_criterion_tabl) print("trend exist:", t_criterion_calc > t_criterion_tabl) # Метод Фостера-Стьюарта print(5 * "=", "foster–stuart", 5 * "=") result_list = [] for i, val in enumerate(data): if i == 0: result_list.append((None, None, None, None)) else: # calculate k j = 0 while j < i: if val < data[j]: j = -1 break j += 1 k_val = 0 if j == -1 else 1 # calculate l j = 0 while j < i: if val > data[j]: j = -1 break j += 1 l_val = 0 if j == -1 else 1 # calculate s s_val = k_val + l_val # calculate d d_val = k_val - l_val result_list.append((k_val, l_val, s_val, d_val)) t = Texttable() t.add_rows([["k", "l ", "s", "d"], *result_list]) print(t.draw()) s_sum = 0 d_sum = 0 for k, l, s, d in result_list[1:]: s_sum += s d_sum += d print("s_sum:", s_sum) print("d_sum:", d_sum) assert (len(data) == 10) m = 3.858 # because len(data) == 10 t_s = abs(d_sum - 0) / 1.964 print("t_s", round(t_s, 2)) t_d = round((s_sum - m) / 1.288, 2) print("t_d", t_d) assert (len(data) - 1 == 9) t_tabl = 2.26 # because P <= 0.05 and len(data) - 1 == 9 print("t_tabl", t_tabl) print("row trend exist:", t_s > t_tabl) print("dispersion trend exist:", t_d > t_tabl)
def print_global_status(self): socat_flag = False racadm_flag = False ipmi_console_flag = False if not self.__node_list: print "There is no node." return for node in self.__node_list: nd_status = node.get_node_status() if 'socat' in nd_status: socat_flag = True if 'racadm' in nd_status: racadm_flag = True if 'ipmi_console' in nd_status: ipmi_console_flag = True if racadm_flag and ipmi_console_flag and socat_flag: break header_line = ['name', 'bmc pid', 'node pid'] width = [12, 6, 6] align = ['c', 'l', 'l'] if socat_flag: header_line.append('socat pid') width.append(6) align.append('l') if racadm_flag: header_line.append('racadm pid') width.append(6) align.append('l') if ipmi_console_flag: header_line.append('ipmi-console pid') width.append(12) align.append('l') header_line.append('ports') port_width = 80 - 14 - 9 - 9 - socat_flag*9 - \ racadm_flag*9 - ipmi_console_flag*15 width.append(port_width - 1) align.append('l') rows = [] rows.append(header_line) for node in self.__node_list: nd_status = node.get_node_status() line = [node.get_node_name()] if 'bmc' in nd_status: line.append(nd_status['bmc']) else: line.append('-') if 'node' in nd_status: line.append(nd_status['node']) else: line.append('-') if socat_flag: if 'socat' in nd_status: line.append(nd_status['socat']) else: line.append('-') if racadm_flag: if 'racadm' in nd_status: line.append(nd_status['racadm']) else: line.append('-') if ipmi_console_flag: if 'ipmi_console' in nd_status: line.append(nd_status['ipmi_console']) else: line.append('-') port = '' for p in node.get_port_status(): port += "{} ".format(p) if port == '': line.append('-') else: line.append(port) rows.append(line) table = Texttable() table_type = ~Texttable.BORDER table.set_deco(table_type) table.set_cols_width(width) table.set_cols_align(align) table.add_rows(rows) print table.draw() + '\n'
def printTextTable(board): table = Texttable() table.add_rows(board, []) print(table.draw())
def spp(): table = Texttable(max_width=900) no = 0 nama = [] nim = [] kelas = [] bay_uts = [] bay_uas = [] bay_bulan = [] bay_seminar = [] bay_kas = [] admin = [] print("_" * 40) print(" Program Pembayaran Mahasiswa") print("_" * 40) nama = (input("Masukan Nama : ")) nim = (input("Masukan NIM : ")) kelas = (input("Masukan Kelas : ")) print("Pilih jenis pembayaran") print("1.UTS (Rp.250.000)") print("2.UAS (Rp.500.000") pilih1 = (input("Pilih (1/2) ? ")) if pilih1 == '1': uts_uas = 'UTS' bay_uts = 250000 bay_uas = 0 jawab = 't' elif pilih1 == '2': uts_uas = 'UAS' bay_uas = 500000 bay_uts = 0 jawab = 't' else: print("\n!!! Failed ,Please Try Again !!!") pilih = ( input("Apakah Anda mau membayar BULANAN (Rp.500.000/bulan) (y/t) ? ")) if pilih == 'y': bulanan = int( input("\nPembayaran BULANAN \nDi bayar untuk berapa bulan ? ")) d_bulanan = 'BULANAN' bay_bulan = 5000000 * bulanan else: bulanan_ = '' bay_bulan = 0 pilih = (input("Apakah Anda mau membayar SEMINAR (Rp.100.000) (y/t) ? ")) if pilih == 'y': seminar = 'SEMINAR' bay_seminar = 100000 else: seminar = '' bay_seminar = 0 pilih = (input("Apakah Anda mau membayar KAS (Rp.20.000/bulan) (y/t) ? ")) if pilih == 'y': d_kas = 'KAS' kas = int(input("\nPembayaran KAS \nDi bayar untuk berapa bulan ? ")) bay_kas = 20000 * kas else: kas = '' bay_kas = 0 print("Anda Akan dikenakan Biaya Admin sebesar (Rp.5.000)") input('') admin = 5000 no = +1 for ia in range(no): total_bayar = bay_uts + bay_uas + bay_bulan + bay_seminar + bay_kas grand_total = total_bayar + admin table.set_cols_dtype( ['a', 'i', 'i', 'i', 'i', 'i', 'i', 'i', 'i', 'i', 'i', 'i']) table.add_rows([[ 'NO', 'NAMA', 'NIM', 'KELAS', 'UTS', 'UAS', 'BULAN', 'SEMINAR', 'KAS', 'TOTAL', 'ADMIN', 'GRAND TOTAL' ], [ ia + 1, nama, nim, kelas, bay_uts, bay_uas, bay_bulan, bay_seminar, bay_kas, total_bayar, admin, grand_total ]]) print("_" * 30) print(" Rincian Pembayaran") print("_" * 30) print(table.draw()) jawab3 = input("\n Tambahkan Data PEMBAYARAN (y/t)? ") print("")
for token in tokens: if token.lower() in domains: domainset.append(token) # check for bi-grams and tri-grams (example: machine learning) for token in noun_chunk: token = token.lower().strip() if token in domains: domainset.append(token) return [i.capitalize() for i in set([i.lower() for i in domainset])] name = extract_name(text) phone = extract_mobile_numbers(text) email = extract_emails(text) education = extract_education(text) skills = extract_skills(text) domains = extract_domains(text) from texttable import Texttable t = Texttable() t.set_cols_dtype(['t','t','t', 't', 't', 't']) t.set_cols_width([10, 16, 16, 10, 15, 15]) t.add_rows([['Name', 'Mobile Number', 'Email', 'Education', 'Technical Skills', 'Domains'], [name, phone, email, education, skills, domains]]) print(t.draw()) #print(tabulate([[name, phone, email, education]], headers=['Name', 'Mobile Number', 'Email', 'Education'], tablefmt='orgtbl')) #import spacy
def draw_single_response_table(response): table = Texttable(max_width=140) table.add_row(response.keys()) table.add_row(response.values()) return table.draw()