예제 #1
0
def inception_module(input,
                     n_filters=64,
                     kernel_sizes=[3, 5],
                     is_training=None,
                     bn_decay=None,
                     scope='inception'):
    one_by_one = tf_util.conv3d(input,
                                n_filters, [1, 1, 1],
                                scope=scope + '_conv1',
                                stride=[1, 1, 1],
                                padding='SAME',
                                bn=True,
                                bn_decay=bn_decay,
                                is_training=is_training)
    three_by_three = tf_util.conv3d(
        one_by_one,
        int(n_filters / 2),
        [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]],
        scope=scope + '_conv2',
        stride=[1, 1, 1],
        padding='SAME',
        bn=True,
        bn_decay=bn_decay,
        is_training=is_training)
    five_by_five = tf_util.conv3d(
        one_by_one,
        int(n_filters / 2),
        [kernel_sizes[1], kernel_sizes[1], kernel_sizes[1]],
        scope=scope + '_conv3',
        stride=[1, 1, 1],
        padding='SAME',
        bn=True,
        bn_decay=bn_decay,
        is_training=is_training)
    average_pooling = tf_util.avg_pool3d(
        input, [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]],
        scope=scope + '_avg_pool',
        stride=[1, 1, 1],
        padding='SAME')
    average_pooling = tf_util.conv3d(average_pooling,
                                     n_filters, [1, 1, 1],
                                     scope=scope + '_conv4',
                                     stride=[1, 1, 1],
                                     padding='SAME',
                                     bn=True,
                                     bn_decay=bn_decay,
                                     is_training=is_training)

    output = tf.concat(
        [one_by_one, three_by_three, five_by_five, average_pooling], axis=4)
    #output = output + tf.tile(input) ??? #resnet
    return output
예제 #2
0
def inception_module(input, n_filters=64, kernel_sizes=[3,5], is_training=None, bn_decay=None, scope='inception'):
    '''

    :param input: [B,K,K,K,FV]
    :param n_filters:
    :return: output: [B,K,K,K,n_filters*2]
    '''
    one_by_one =  tf_util.conv3d(input, n_filters, [1,1,1], scope= scope + '_conv1',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)
    three_by_three = tf_util.conv3d(one_by_one, int(n_filters), [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]], scope= scope + '_conv2',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)
    five_by_five = tf_util.conv3d(one_by_one, int(n_filters), [kernel_sizes[1], kernel_sizes[1], kernel_sizes[1]], scope=scope + '_conv3',
                          stride=[1, 1, 1], padding='SAME', bn=True,
                          bn_decay=bn_decay, is_training=is_training)
    average_pooling = tf_util.avg_pool3d(input, [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]], scope=scope+'_avg_pool', stride=[1, 1, 1], padding='SAME')
    average_pooling = tf_util.conv3d(average_pooling, n_filters, [1,1,1], scope= scope + '_conv4',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)

    output = tf.concat([ one_by_one, three_by_three, five_by_five, average_pooling], axis=4)
    return output
예제 #3
0

def inception_module(input, n_filters=64, kernel_sizes=[3, 5], is_training=None, bn_decay=None, scope='inception'):
    """
     3D inception_module
     """
    one_by_one =  tf_util.conv3d(input, n_filters, [1, 1, 1], scope= scope + '_conv1',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)
    three_by_three = tf_util.conv3d(one_by_one, int(n_filters/2), [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]], scope= scope + '_conv2',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)
    five_by_five = tf_util.conv3d(one_by_one, int(n_filters/2), [kernel_sizes[1], kernel_sizes[1], kernel_sizes[1]], scope=scope + '_conv3',
                          stride=[1, 1, 1], padding='SAME', bn=True,
                          bn_decay=bn_decay, is_training=is_training)
    average_pooling = tf_util.avg_pool3d(input, [kernel_sizes[0], kernel_sizes[0], kernel_sizes[0]], scope=scope+'_avg_pool', stride=[1, 1, 1], padding='SAME')
    average_pooling = tf_util.conv3d(average_pooling, n_filters, [1,1,1], scope= scope + '_conv4',
           stride=[1, 1, 1], padding='SAME', bn=True,
           bn_decay=bn_decay, is_training=is_training)

    output = tf.concat([ one_by_one, three_by_three, five_by_five, average_pooling], axis=4)
    #output = output + tf.tile(input) ??? #resnet
    return output



if __name__ == '__main__':
    with tf.Graph().as_default():
        inputs = tf.zeros((32, 1024, 3))
        outputs = get_model(inputs, tf.constant(True))
        print (outputs)
예제 #4
0
def pointnet_sa_module(cascade_id,
                       xyz,
                       points,
                       bidmap,
                       mlp_configs,
                       block_bottom_center_mm,
                       configs,
                       sgf_config_pls,
                       is_training,
                       bn_decay,
                       scope,
                       bn=True,
                       tnet_spec=None,
                       use_xyz=True,
                       IsShowModel=False):
    '''
    Input cascade_id==0:
        xyz is grouped_points: (batch_size,nsubblock0,npoint_subblock0,6)
        points: None
        bidmap: None
    Input cascade_id==1:
        xyz: (batch_size,nsubblock0,3)
        points: (batch_size,nsubblock0,channel)
        bidmap: (batch_size,nsubblock1,npoint_subblock1)
    Medium cascade_id==1:
        grouped_xyz: (batch_size,nsubblock1,npoint_subblock1,3)
        new_xyz: (batch_size,nsubblock1,3)
        group_points: (batch_size,nsubblock1,npoint_subblock1,channel)

    output cascade_id==1:
        new_xyz: (batch_size,nsubblock1,3)
        new_points: (batch_size,nsubblock1,channel)
    '''
    block_bottom_center_mm = tf.cast(
        block_bottom_center_mm, tf.float32, name='block_bottom_center_mm'
    )  # gpu_0/sa_layer3/block_bottom_center_mm:0
    batch_size = xyz.get_shape()[0].value
    with tf.variable_scope(scope) as sc:
        cascade_num = configs['flatten_bm_extract_idx'].shape[
            0] - 1  # include global here (Note: cascade_num does not include global in block_pre_util )
        assert configs['sub_block_step_candis'].size == cascade_num - 1
        if cascade_id == 0:
            indrop_keep_mask = tf.get_default_graph().get_tensor_by_name(
                'indrop_keep_mask:0')  # indrop_keep_mask:0

        assert len(xyz.shape) == 3

        if bidmap == None:
            grouped_xyz = tf.expand_dims(xyz, 1)
            grouped_points = tf.expand_dims(points, 1)
            new_xyz = None
            valid_mask = None
        else:
            batch_idx = tf.reshape(tf.range(batch_size), [batch_size, 1, 1, 1])
            nsubblock = bidmap.get_shape()[1].value
            npoint_subblock = bidmap.get_shape()[2].value
            batch_idx_ = tf.tile(batch_idx, [1, nsubblock, npoint_subblock, 1])
            bidmap = tf.expand_dims(bidmap, axis=-1, name='bidmap')
            bidmap_concat = tf.concat(
                [batch_idx_, bidmap], axis=-1,
                name='bidmap_concat')  # gpu_0/sa_layer0/bidmap_concat:0
            # The value for invalid item in bidmap is -17.
            # On GPU, the responding grouped_xyz and grouped_points is 0.
            # NOT WORK on CPU !!!

            # invalid indices comes from merge_blocks_while_fix_bmap
            # set point_indices_f for invalid points as
            # NETCONFIG['redundant_points_in_block'] ( shoud be set < -500)
            valid_mask = tf.greater(bidmap, tf.constant(
                -500, tf.int32), 'valid_mask')  # gpu_0/sa_layer0/valid_mask:0

            grouped_xyz = tf.gather_nd(
                xyz, bidmap_concat,
                name='grouped_xyz')  # gpu_0/sa_layer0/grouped_xyz:0
            grouped_points = tf.gather_nd(points,
                                          bidmap_concat,
                                          name='group_points')
            if cascade_id == 0 and len(indrop_keep_mask.get_shape()) != 0:
                grouped_indrop_keep_mask = tf.gather_nd(
                    indrop_keep_mask,
                    bidmap_concat,
                    name='grouped_indrop_keep_mask'
                )  # gpu_0/sa_layer0/grouped_indrop_keep_mask:0

        # new_xyz is the "voxel center" or "mean position of points in the voxel"
        if configs['mean_grouping_position'] and (
                not mlp_configs['block_learning'] == '3DCNN'):
            new_xyz = tf.reduce_mean(grouped_xyz, -2)
        else:
            new_xyz = block_bottom_center_mm[:, :, 3:6] * tf.constant(
                0.001, tf.float32)
        # the mid can be mean or block center, decided by configs['mean_grouping_position']
        sub_block_mid = tf.expand_dims(
            new_xyz, -2, name='sub_block_mid')  # gpu_1/sa_layer0/sub_block_mid
        global_block_mid = tf.reduce_mean(sub_block_mid,
                                          1,
                                          keepdims=True,
                                          name='global_block_mid')
        grouped_xyz_submid = grouped_xyz - sub_block_mid
        grouped_xyz_glomid = grouped_xyz - global_block_mid

        grouped_xyz_feed = []
        if 'raw' in configs['xyz_elements']:
            grouped_xyz_feed.append(grouped_xyz)
        if 'sub_mid' in configs['xyz_elements']:
            grouped_xyz_feed.append(grouped_xyz_submid)
        if 'global_mid' in configs['xyz_elements']:
            grouped_xyz_feed.append(grouped_xyz_glomid)
        grouped_xyz_feed = tf.concat(grouped_xyz_feed, -1)

        if cascade_id == 0:
            # xyz must be at the first in feed_data_elements !!!!
            grouped_points = tf.concat(
                [grouped_xyz_feed, grouped_points[..., 3:]], -1)

            if len(indrop_keep_mask.get_shape()) != 0:
                if InDropMethod == 'set1st':
                    # set all the dropped item as the first item
                    tmp1 = tf.multiply(grouped_points,
                                       grouped_indrop_keep_mask)
                    points_1st = grouped_points[:, :, 0:1, :]
                    points_1st = tf.tile(points_1st,
                                         [1, 1, grouped_points.shape[2], 1])
                    indrop_mask_inverse = 1 - grouped_indrop_keep_mask
                    tmp2 = indrop_mask_inverse * points_1st
                    grouped_points = tf.add(
                        tmp1, tmp2, name='grouped_points_droped'
                    )  # gpu_0/sa_layer0/grouped_points_droped
                    #tf.add_to_collection( 'check', grouped_points )
                elif InDropMethod == 'set0':
                    valid_mask = tf.logical_and(
                        valid_mask,
                        tf.equal(grouped_indrop_keep_mask, 0),
                        name='valid_mask_droped'
                    )  # gpu_1/sa_layer0/valid_mask_droped

        elif use_xyz:
            grouped_points = tf.concat([grouped_xyz_feed, grouped_points],
                                       axis=-1)

        tf.add_to_collection('grouped_xyz', grouped_xyz)
        tf.add_to_collection('grouped_xyz_submid', grouped_xyz_submid)
        tf.add_to_collection('grouped_xyz_glomid', grouped_xyz_glomid)

        if cascade_id > 0 and use_xyz and (not cascade_id == cascade_num - 1):
            grouped_points = tf.concat([grouped_xyz_feed, grouped_points],
                                       axis=-1)

        nsample = grouped_points.get_shape()[2].value  # the conv kernel size

        if IsShowModel:
            print(
                '\n\npointnet_sa_module cascade_id:%d\n xyz:%s\n grouped_xyz:%s\n new_xyz:%s\n grouped_points:%s\n nsample:%d'
                % (cascade_id, shape_str([xyz]), shape_str([grouped_xyz]),
                   shape_str([new_xyz]), shape_str([grouped_points]), nsample))

        new_points = grouped_points
        if valid_mask != None:
            new_points = new_points * tf.cast(valid_mask[:, :, :, 0:1],
                                              tf.float32)

        if 'growth_rate' in mlp_configs['point_encoder'][cascade_id]:
            new_points = tf_util.dense_net( new_points, mlp_configs['point_encoder'][cascade_id], bn, is_training, bn_decay,\
                                           scope = 'dense_cascade_%d_point_encoder'%(cascade_id) , is_show_model = IsShowModel )
        else:
            for i, num_out_channel in enumerate(
                    mlp_configs['point_encoder'][cascade_id]):
                new_points = tf_util.conv2d(new_points,
                                            num_out_channel, [1, 1],
                                            padding='VALID',
                                            stride=[1, 1],
                                            bn=bn,
                                            is_training=is_training,
                                            scope='conv%d' % (i),
                                            bn_decay=bn_decay)
                if configs['Cnn_keep_prob'] < 1:
                    if (not configs['only_last_layer_ineach_cascade']
                        ) or i == len(
                            mlp_configs['point_encoder'][cascade_id]) - 1:
                        new_points = tf_util.dropout(
                            new_points,
                            keep_prob=configs['Cnn_keep_prob'],
                            is_training=is_training,
                            scope='dropout',
                            name='cnn_dp%d' % (i))
                if IsShowModel:
                    print('point encoder1 %d, new_points:%s' %
                          (i, shape_str([new_points])))

        if cascade_id == 0:
            root_point_features = new_points
            #if InDropMethod == 'set0':
            #    if len(indrop_keep_mask.get_shape()) != 0:
            #            new_points = tf.identity(new_points,'points_before_droped') # gpu_0/sa_layer0/points_before_droped:0
            #            new_points = tf.multiply( new_points, grouped_indrop_keep_mask, name='droped_points' )   # gpu_0/sa_layer0/droped_points:0
        else:
            root_point_features = None

        pooling = mlp_configs['block_learning']
        if pooling == '3DCNN' and (cascade_id == 0):
            pooling = 'max'

        #if pooling=='avg':
        #    new_points = tf_util.avg_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='avgpool1')
        #elif pooling=='weighted_avg':
        #    with tf.variable_scope('weighted_avg1'):
        #        dists = tf.norm(grouped_xyz,axis=-1,ord=2,keep_dims=True)
        #        exp_dists = tf.exp(-dists * 5)
        #        weights = exp_dists/tf.reduce_sum(exp_dists,axis=2,keep_dims=True) # (batch_size, npoint, nsample, 1)
        #        new_points *= weights # (batch_size, npoint, nsample, mlps_0[-1])
        #        new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        if pooling == 'max':
            # Even the grouped_points and grouped_xyz are 0 for invalid points, the
            # vaule after mlp will not be. It has to be set as 0 forcely before
            # pooling.
            if valid_mask != None:
                new_points = new_points * tf.cast(valid_mask[:, :, :, 0:1],
                                                  tf.float32)
            new_points = tf.identity(
                new_points,
                'points_before_max')  # gpu_0/sa_layer0/points_before_max
            new_points = tf.reduce_max(new_points,
                                       axis=[2],
                                       keepdims=True,
                                       name='points_after_max')
        #elif pooling=='min':
        #    new_points = tf_util.max_pool2d(-1*new_points, [1,nsample], stride=[1,1], padding='VALID', scope='minpool1')
        #elif pooling=='max_and_avg':
        #    avg_points = tf_util.max_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='maxpool1')
        #    max_points = tf_util.avg_pool2d(new_points, [1,nsample], stride=[1,1], padding='VALID', scope='avgpool1')
        #    new_points = tf.concat([avg_points, max_points], axis=-1)
        elif pooling == '3DCNN':
            new_points = grouped_points_to_voxel_points(
                cascade_id,
                new_points,
                valid_mask,
                block_bottom_center_mm,
                configs,
                grouped_xyz,
                IsShowVoxelModel=IsShowModel)
            if IsShowModel:
                print('voxel points:%s' % (shape_str([new_points])))
            for i, num_out_channel in enumerate(
                    mlp_configs['voxel_channels'][cascade_id]):
                kernel_i = [mlp_configs['voxel_kernels'][cascade_id][i]] * 3
                stride_i = [mlp_configs['voxel_strides'][cascade_id][i]] * 3
                if new_points.shape[1] % 2 == 0:
                    padding_i = np.array([[0, 0], [1, 0], [1, 0], [1, 0], [
                        0, 0
                    ]]) * mlp_configs['voxel_paddings'][cascade_id][i]
                else:
                    padding_i = np.array([[0, 0], [1, 1], [1, 1], [1, 1], [
                        0, 0
                    ]]) * mlp_configs['voxel_paddings'][cascade_id][i]
                new_points = tf.pad(new_points, padding_i, "CONSTANT")

                if type(num_out_channel) == int:
                    new_points = tf_util.conv3d(new_points,
                                                num_out_channel,
                                                kernel_i,
                                                scope='3dconv_%d' % (i),
                                                stride=stride_i,
                                                padding='VALID',
                                                bn=bn,
                                                is_training=is_training,
                                                bn_decay=bn_decay,
                                                name='points_3dcnn_%d' % (i))
                    if IsShowModel:
                        print('block learning by 3dcnn %d, new_points:%s' %
                              (i, shape_str([new_points])))
                elif num_out_channel == 'max':
                    new_points = tf_util.max_pool3d(new_points,
                                                    kernel_i,
                                                    scope='3dmax_%d' % (i),
                                                    stride=stride_i,
                                                    padding='VALID')
                    if IsShowModel:
                        print('block learning max pooling %d, new_points:%s' %
                              (i, shape_str([new_points])))
                elif num_out_channel == 'avg':
                    new_points = tf_util.avg_pool3d(new_points,
                                                    kernel_i,
                                                    scope='3dmax_%d' % (i),
                                                    stride=stride_i,
                                                    padding='VALID')
                    if IsShowModel:
                        print('block learning avg pooling %d, new_points:%s' %
                              (i, shape_str([new_points])))
                # gpu_0/sa_layer1/3dconv_0/points_3dcnn_0:0
                if configs['Cnn_keep_prob'] < 1:
                    if (not configs['only_last_layer_ineach_cascade']
                        ) or i == len(
                            mlp_configs['voxel_channels'][cascade_id]) - 1:
                        new_points = tf_util.dropout(
                            new_points,
                            keep_prob=configs['Cnn_keep_prob'],
                            is_training=is_training,
                            scope='dropout',
                            name='3dcnn_dp%d' % (i))
                # gpu_0/sa_layer4/3dconv_0/points_3dcnn_0:0
            new_points = tf.squeeze(new_points, [1, 2, 3])
            new_points = tf.reshape(
                new_points, [batch_size, -1, 1, new_points.shape[-1].value])

        if IsShowModel:
            print('after %s, new_points:%s' %
                  (pooling, shape_str([new_points])))

        if 'growth_rate' in mlp_configs['block_encoder'][cascade_id]:
            new_points = tf_util.dense_net(
                new_points,
                mlp_configs['block_encoder'][cascade_id],
                bn,
                is_training,
                bn_decay,
                scope='dense_cascade_%d_block_encoder' % (cascade_id),
                is_show_model=IsShowModel)
        else:
            for i, num_out_channel in enumerate(
                    mlp_configs['block_encoder'][cascade_id]):
                new_points = tf_util.conv2d(new_points,
                                            num_out_channel, [1, 1],
                                            padding='VALID',
                                            stride=[1, 1],
                                            bn=bn,
                                            is_training=is_training,
                                            scope='conv_post_%d' % (i),
                                            bn_decay=bn_decay)
                if configs['Cnn_keep_prob'] < 1:
                    if (not configs['only_last_layer_ineach_cascade']
                        ) or i == len(
                            mlp_configs['block_encoder'][cascade_id]) - 1:
                        new_points = tf_util.dropout(
                            new_points,
                            keep_prob=configs['Cnn_keep_prob'],
                            is_training=is_training,
                            scope='dropout',
                            name='cnn_dp%d' % (i))
                if IsShowModel:
                    print('block encoder %d, new_points:%s' %
                          (i, shape_str([new_points])))
        # (2, 512, 1, 64)
        new_points = tf.squeeze(new_points,
                                [2])  # (batch_size, npoints, mlps_1[-1])

        if IsShowModel:
            print(
                'pointnet_sa_module return\n new_xyz: %s\n new_points:%s\n\n' %
                (shape_str([new_xyz]), shape_str([new_points])))
            #import pdb;pdb.set_trace()
        # (2, 512, 64)
        return new_xyz, new_points, root_point_features