예제 #1
0
def gpu_task(img_names, db_dir, save_dir):
    sosnet32 = sosnet_model.SOSNet32x32()
    net_name = 'notredame'
    sosnet32.load_state_dict(torch.load(os.path.join('sosnet-weights',"sosnet-32x32-"+net_name+".pth")))
    sosnet32.cuda().eval()

    local_detector = cv2.xfeatures2d.SIFT_create()

    for i, line in enumerate(img_names):
        img_path = os.path.join(db_dir, line)
        print img_path
        img = cv2.imread(img_path, 1)
        height, width = img.shape[:2]
        img_resize = cv2.resize(img, (int(0.5*width), int(0.5*height)))
        kpt = local_detector.detect(img, None)
        desc = tfeat_utils.describe_opencv(sosnet32, \
                cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), kpt, \
                patch_size = 32, mag_factor = 7, use_gpu = True)
        with open(os.path.join(save_dir, line.split('.jpg')[0] + '.sosnet.sift'), 'w') as f:
            if desc is None:
                f.write(str(128) + '\n')
                f.write(str(0) + '\n')
                f.close()
                print "Null: %s" % line
                continue
            if len(desc) > 0:
                f.write(str(128) + '\n')
                f.write(str(len(kpt)) + '\n')
                for j in range(len(desc)):
                    locs_str = '0 0 0 0 0 '
                    descs_str = " ".join([str(float(value)) for value in desc[j]])
                    all_strs = locs_str + descs_str
                    f.write(all_strs + '\n')
                f.close()
            print "%d(%d), %s, desc: %d" %(i+1, len(img_names), line, len(desc))
예제 #2
0
def init():
    global is_initialized, img_dict, sosnet32

    if not is_initialized:
        is_initialized = True
        torch.no_grad()

        # Init the 32x32 version of SOSNet.
        sosnet32 = sosnet_model.SOSNet32x32()
        net_name = 'notredame'
        sosnet32.load_state_dict(torch.load(
            os.path.join('sosnet-weights',
                         "sosnet-32x32-" + net_name + ".pth")),
                                 strict=False)
        sosnet32.cuda().eval()

        # Load the images and detect BRISK keypoints using openCV.
        brisk = cv2.BRISK_create(100)

        # Verifying if precomputed features are present.
        if os.path.exists(sosnet_constants.SOSNET_FEATURES_PATH):
            img_dict = pickle.load(
                open(sosnet_constants.SOSNET_FEATURES_PATH, "rb"))
        else:
            print(
                "sosnet_search.py :: init :: Constructing features for the images"
            )

            for img in os.listdir(sosnet_constants.SOSNET_IMAGE_DIR):
                try:
                    # Loading the images and detecting BRISK keypoints using openCV.
                    image_vec = cv2.imread(
                        sosnet_constants.SOSNET_IMAGE_DIR + '{}'.format(img),
                        0)
                    kp = brisk.detect(image_vec, None)

                    # Using the tfeat_utils method to rectify patches around openCV keypoints.
                    desc_tfeat = tfeat_utils.describe_opencv(sosnet32,
                                                             image_vec,
                                                             kp,
                                                             patch_size=32,
                                                             mag_factor=3)

                    img_dict[img] = desc_tfeat
                except Exception as e:
                    print(e)
                    print(
                        "sosnet_search.py :: init :: Error while indexing :: ",
                        img)

            with open(sosnet_constants.SOSNET_FEATURES_PATH, 'wb') as handle:
                pickle.dump(img_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)

            print("sosnet_search.py :: init :: Finished processing ",
                  len(img_dict), "images")
예제 #3
0
def sosnet_search(query_image, k):
    # Initializing the variables
    rank_dict = {}
    ret_list = []

    # Load the images and detect BRISK keypoints using openCV.
    brisk = cv2.BRISK_create(100)
    query_image_vec = cv2.imread(query_image, 0)
    kp = brisk.detect(query_image_vec, None)

    # Rectifying patches around openCV keypoints.
    desc_tfeat = tfeat_utils.describe_opencv(sosnet32,
                                             query_image_vec,
                                             kp,
                                             patch_size=32,
                                             mag_factor=3)

    bf = cv2.BFMatcher(cv2.NORM_L2)
    for key in img_dict:
        try:
            matches = bf.knnMatch(desc_tfeat, img_dict[key], k=2)
            # Apply SIFT's ratio test, notice that 0.8 may not be the best ratio for SOSNet
            good = []
            for m, n in matches:
                if m.distance < 0.8 * n.distance:
                    good.append([m])

            # Adding to the candidate list only when there are features matching.
            if len(good) != 0:
                rank_dict[key] = len(good)

        except Exception as e:
            print(e)
            print(
                "sosnet_search.py :: sosnet_search :: Error while matching :: ",
                key)

    # Sorting the output based on the number of matches
    for fea in sorted(rank_dict, key=rank_dict.get, reverse=True):
        ret_list.append(fea)

    return ret_list[:k]
예제 #4
0
# Apply ratio test
good = []
for m, n in matches:
    if m.distance < 0.8 * n.distance:
        good.append([m])

img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, 0, flags=2)
plt.subplot(1, 2, 1)
plt.title('BRISK detector and descriptor', fontsize=10)
plt.imshow(img3)

# mag_factor is how many times the original keypoint scale
# is enlarged to generate a patch from a keypoint
mag_factor = 3
#print('kp1: ', kp1)
desc_tfeat1 = tfeat_utils.describe_opencv(tfeat, img1, kp1, 32, mag_factor)
desc_tfeat2 = tfeat_utils.describe_opencv(tfeat, img2, kp2, 32, mag_factor)

bf = cv2.BFMatcher(cv2.NORM_L2)
matches = bf.knnMatch(desc_tfeat1, desc_tfeat2, k=2)
# Apply ratio test
good = []
for m, n in matches:
    if m.distance < 0.8 * n.distance:
        good.append([m])

img4 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, 0, flags=2)
plt.subplot(1, 2, 2)
plt.title('BRISK detector and TFEAT descriptor', fontsize=10)
plt.imshow(img4)
    # Get three random images from current path
    for samples in range(N_IMAGES_SAMPLED):
        picture = random.choice(os.listdir(current_path))
        # Ensure it's a .jpg and not already been sampled
        while not ((picture.endswith('.jpg')) and
                   (picture not in sampled_photos)):
            picture = random.choice(os.listdir(current_path))
        # Append the sampled photo to the library of sampled photos to ensure that photos are distinct
        sampled_photos.append(picture)

        # Should probably make sure pictures are distinct, or hand curate photos. But, I'm lazy and time constraints apply here
        # If file is a .jpg, read in OPENCV grayscale and get keypoints
        pic_path = current_path + os.path.sep + picture
        img = cv2.imread(str(pic_path), cv2.IMREAD_GRAYSCALE)

        # Rescale
        img = cv2.resize(img, (0, 0), fx=RES_SCALE_OBJECT, fy=RES_SCALE_OBJECT)
        key_pts, descriptors = brisk.detectAndCompute(img, None)
        desc_tfeat = tfeat_utils.describe_opencv(tfeat, img, key_pts, 32,
                                                 mag_factor)

        # Append Array to Itself for Saving
        array_to_save = np.vstack((array_to_save, desc_tfeat))

    # Save Array after Getting Desired Number of Images
    print(CLASS_NAMES[CURRENT_ITEM])
    np.save(descriptor_filepath_to_save, array_to_save)
    # Iterate on class
    CURRENT_ITEM = CURRENT_ITEM + 1
예제 #6
0
    matches = flann.knnMatch(obj_desc, bin_desc, k=2)
    # store all the good matches as per Lowe's ratio test.
    for m, n in matches:
        if m.distance < LOWE_THRESHOLD * n.distance:
            sift_found_items.append(CLASS_NAMES[i])

# Once all descriptors have been matched and had Lowe's Ratio Test Applied
conf_sift_found_items = removeElements(sift_found_items, k=2)
print('SIFT Keypoint Detection Found: ' + str(conf_sift_found_items))

#######################################
# Section 5: Iterate Through Tfeat Descriptor Libraries and Perform Matching
##33#####################################

# Describe bin key pts using tfeat
bin_desc_tfeat = tfeat_utils.describe_opencv(tfeat, image, bin_kpts, 32, mag_factor)
# List for Found Items
tfeat_found_items = []

for i, lib in enumerate(TFEAT_DESCRIPTOR_FILES):
    obj_desc = np.load(str(TFEAT_DESCRIPTOR_FILES[i]))
    matches = flann.knnMatch(obj_desc, bin_desc_tfeat, k=2)
    # store all the good matches as per Lowe's ratio test.
    for m, n in matches:
        if m.distance < LOWE_THRESHOLD * n.distance:
            tfeat_found_items.append(CLASS_NAMES[i])

# Once all descriptors have been matched and had Lowe's Ratio Test Applied, print detections
conf_tfeat_found_items = removeElements(tfeat_found_items, k=2)
print('CNN-Based Keypoint Detection Found: ' + str(conf_tfeat_found_items))
예제 #7
0
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
matches = bf.knnMatch(object_1_desc, bin_desc, k=2)
# Apply ratio test
good = []
for m, n in matches:
    if m.distance < LOWE_THRESHOLD * n.distance:
        good.append([m])

img_brisk = cv2.drawMatchesKnn(object_1_image, object_1_kpts, bin_image, bin_kpts, good, 0, flags=2)
im_brisk_filename = '../tfeat_logs/images/tfeat_figure_gen_BRISK_' + str(append) + '.jpg'
cv2.imwrite(str(im_brisk_filename), img_brisk)

# Get tfeat Descriptors
mag_factor = 3
bin_tfeat_desc = tfeat_utils.describe_opencv(tfeat, bin_image, bin_kpts, 32, mag_factor)
obj_tfeat_desc = tfeat_utils.describe_opencv(tfeat, object_1_image, object_1_kpts, 32, mag_factor)

print('tfeat Bin Descriptors')
print(bin_tfeat_desc)
print('-----------------------')
print('tfeat Object Descriptors')
print(obj_tfeat_desc)

# Update Matcher
bf = cv2.BFMatcher(cv2.NORM_L2)

# Match tfeat descriptors
matches = bf.knnMatch(obj_tfeat_desc, bin_tfeat_desc, k=2)

# Apply ratio test