def fit(self, X, y): self.vectorizer, self.corpus_matrix, _ = get_tfidf_model(X) param = {'objective': 'binary:logistic'} epochs = 100 D_train = xgb.DMatrix(self.corpus_matrix, label=y) self.clf = xgb.train(param, D_train, epochs)
def fit(self, X, y): self.vectorizer, self.corpus_matrix, _ = get_tfidf_model(X) self.clf = SVC(kernel='rbf') self.clf.fit(self.corpus_matrix, y)
def fit(self, X, y): self.vectorizer, self.corpus_matrix, _ = get_tfidf_model(X) self.clf = naive_bayes.MultinomialNB() self.clf.fit(self.corpus_matrix, y)
def fit(self, X, y): self.vectorizer, self.X_vectorized, _ = get_tfidf_model(X) self.clf = KNeighborsClassifier() self.clf.fit(self.X_vectorized, y)
def fit(self, X, y): self.x0, self.y0, self.x1, self.y1 = split_binary_classes(X, y) self.vectorizer0, self.corpus_matrix0, _ = get_tfidf_model(self.x0) self.vectorizer1, self.corpus_matrix1, _ = get_tfidf_model(self.x1)
def fit(self, X, y): self.vectorizer, self.X_vectorized, _ = get_tfidf_model(X) self.clf = RandomForestClassifier() self.clf.fit(self.X_vectorized, y)