예제 #1
0
파일: slhw.py 프로젝트: winkywow/tframe
  def __init__(
      self,
      config_string,
      num_layers,
      head_size,
      activation='tanh',
      use_bias=True,
      weight_initializer='xavier_normal',
      bias_initializer='zeros',
      gutter=False,
      gutter_bias=None,
      **kwargs):

    # Call parent's constructor
    LayerWithNeurons.__init__(self, activation, weight_initializer, use_bias,
                              bias_initializer, **kwargs)
    HardDriver.__init__(self, config_string, head_size, gutter=gutter,
                        gutter_bias=gutter_bias)

    self._num_layers = checker.check_positive_integer(num_layers)
    self._activation_string = activation
    self.output_scale = [self.total_size]


    self.write_heads = None
예제 #2
0
    def __init__(self,
                 output_dim=None,
                 spatial_configs=None,
                 reverse=False,
                 activation='relu',
                 use_bias=True,
                 weight_initializer='xavier_normal',
                 bias_initializer='zeros',
                 **kwargs):

        assert isinstance(activation, str)
        self.activation_string = activation
        # Call parent's constructor
        LayerWithNeurons.__init__(self, activation, weight_initializer,
                                  use_bias, bias_initializer, **kwargs)

        assert not (output_dim is None and spatial_configs is None)
        self._spatial_groups = []
        if spatial_configs is not None:
            self._spatial_groups = self._get_groups(spatial_configs)
            total_size = self._get_total_size(self._spatial_groups)
            if output_dim is None: output_dim = total_size
            assert output_dim == total_size
        self._output_dim = checker.check_positive_integer(output_dim)
        self._reverse = checker.check_type(reverse, bool)

        self.neuron_scale = [output_dim]
예제 #3
0
파일: misc.py 프로젝트: winkywow/tframe
    def __init__(self,
                 num_classes,
                 heads=1,
                 sum_method=None,
                 normalize=False,
                 use_bias=True,
                 weight_initializer='xavier_normal',
                 bias_initializer='zeros',
                 **kwargs):
        # Call parent's constructor
        LayerWithNeurons.__init__(self, None, weight_initializer, use_bias,
                                  bias_initializer, **kwargs)

        self.num_classes = checker.check_positive_integer(num_classes)
        self._heads = checker.check_positive_integer(heads)
        self._sum_method = sum_method
        self._normalize = checker.check_type(normalize, bool)
        self.neuron_scale = [num_classes]
예제 #4
0
    def __init__(self,
                 layer_width,
                 num_layers,
                 activation='relu',
                 use_bias=True,
                 weight_initializer='xavier_normal',
                 bias_initializer='zeros',
                 t_bias_initializer=-1,
                 **kwargs):
        # Call parent's constructor
        LayerWithNeurons.__init__(self, activation, weight_initializer,
                                  use_bias, bias_initializer, **kwargs)

        self._layer_width = checker.check_positive_integer(layer_width)
        self._num_layers = checker.check_positive_integer(num_layers)
        assert isinstance(activation, str)
        self._activation_string = activation
        self._t_bias_initializer = initializers.get(t_bias_initializer)
예제 #5
0
파일: advanced.py 프로젝트: winkywow/tframe
    def __init__(self,
                 num_neurons,
                 activation=None,
                 use_bias=True,
                 weight_initializer='xavier_normal',
                 bias_initializer='zeros',
                 prune_frac=0,
                 **kwargs):
        # Call parent's constructor
        LayerWithNeurons.__init__(self,
                                  activation,
                                  weight_initializer,
                                  use_bias,
                                  bias_initializer,
                                  prune_frac=prune_frac,
                                  **kwargs)

        self.num_neurons = checker.check_positive_integer(num_neurons)
        self.neuron_scale = [num_neurons]