def multinput(th): assert isinstance(th, Config) model = Classifier(mark=th.mark) # Add hidden layers assert isinstance(th.fc_dims, list) subnet = model.add(inter_type=model.CONCAT) for dims in th.fc_dims: subsubnet = subnet.add() # Add input layer subsubnet.add(Input(sample_shape=th.input_shape)) subsubnet.add(Flatten()) assert isinstance(dims, list) for dim in dims: subsubnet.add(Linear(output_dim=dim)) if core.use_bn: subsubnet.add(BatchNormalization()) subsubnet.add(Activation(th.actype1)) # Add output layer model.add(Linear(output_dim=th.num_classes)) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def multinput(th): assert isinstance(th, Config) model = Classifier(mark=th.mark) # Add hidden layers assert isinstance(th.fc_dims, list) subnet = model.add(inter_type=model.CONCAT) for dims in th.fc_dims: subsubnet = subnet.add() # Add input layer subsubnet.add(Input(sample_shape=th.input_shape)) subsubnet.add(Flatten()) assert isinstance(dims, list) for dim in dims: subsubnet.add(Linear(output_dim=dim)) # if cf10_core.use_bn: subsubnet.add(BatchNormalization()) subsubnet.add(Activation(th.actype1)) # Add output layer model.add(Linear(output_dim=th.num_classes)) # Build model model.build(metric=['accuracy', 'loss'], batch_metric='accuracy', eval_metric='accuracy') return model
def typical(th, cell): assert isinstance(th, Config) # Initiate a model model = Classifier(mark=th.mark, net_type=Recurrent) # Add layers model.add(Input(sample_shape=th.input_shape)) # Add hidden layers model.add(cell) # Build model and return output_and_build(model, th) return model
def unet(th): assert isinstance(th, Config) model = Classifier(mark=th.mark) model.add(Input(sample_shape=th.input_shape)) def add_encoder_block(filters, kernel_size=3, add_pool=True, drop_out=False): model.add(Conv2D(filters, kernel_size)) model.add(Activation.ReLU()) model.add(Conv2D(filters, kernel_size)) output = model.add(Activation.ReLU()) if drop_out: output = model.add(Dropout(0.5)) if add_pool: model.add(MaxPool2D((2, 2), 2)) return output def add_decoder_block(filters, convX, ks1=2, ks2=3): model.add(Deconv2D(filters, ks1, strides=(2, 2))) model.add(Activation.ReLU()) model.add(Concatenate(convX)) model.add(Conv2D(filters, ks2)) model.add(Activation.ReLU()) model.add(Conv2D(filters, ks2)) model.add(Activation.ReLU()) # Construct encoder part conv64 = add_encoder_block(64) conv128 = add_encoder_block(128) conv256 = add_encoder_block(256) conv512 = add_encoder_block(512, drop_out=True) add_encoder_block(1024, add_pool=False, drop_out=True) # Construct decoder part add_decoder_block(512, conv512) add_decoder_block(256, conv256) add_decoder_block(128, conv128) add_decoder_block(64, conv64) # Add output layers model.add(Conv2D(2, 3)) model.add(Activation.ReLU()) model.add(Conv2D(1, 1)) model.add(Activation('sigmoid')) model.build(optimizer=tf.train.AdamOptimizer(th.learning_rate), loss='binary_cross_entropy', metric='accuracy') return model
def fc_lstm(th): assert isinstance(th, Config) th.mark = 'fc_lstm_' + th.mark # Initiate a model model = Classifier(mark=th.mark, net_type=Recurrent) # Add input layer model.add(Input(sample_shape=th.input_shape)) # Add fc layers for dim in th.fc_dims: checker.check_positive_integer(dim) model.add(Linear(output_dim=dim)) # model.add(BatchNorm()) model.add(Activation('relu')) # Add lstm cells for dim in th.rc_dims: model.add(BasicLSTMCell(state_size=dim)) # Add output layer # model.add(Linear(output_dim=th.output_dim)) # Build model optimizer = tf.train.AdamOptimizer(th.learning_rate) model.build(optimizer) return model
def get_container(th, flatten=False): assert isinstance(th, Config) model = Classifier(mark=th.mark) model.add(Input(sample_shape=th.input_shape)) model.add(Normalize(sigma=255.)) if th.centralize_data: model.add(Normalize(mu=th.data_mean)) if flatten: model.add(Flatten()) return model
def get_container(th, flatten=False): assert isinstance(th, Config) model = Classifier(mark=th.mark) model.add(Input(sample_shape=th.input_shape)) model.add(Normalize(sigma=255.)) if th.centralize_data: model.add(Normalize(mu=th.data_mean)) if flatten: model.add(Flatten()) # Register extractor and researcher model.register_extractor(mn_du.MNIST.connection_heat_map_extractor) monitor.register_grad_researcher(mn_du.MNIST.flatten_researcher) return model
def vanilla(mark): model = Classifier(mark=mark) model.add(Input(sample_shape=[784])) def fc_bn_relu(bn=True): model.add(Linear(100)) model.add(Activation('relu')) if bn: model.add(BatchNorm()) fc_bn_relu() fc_bn_relu() model.add(Linear(10)) # Build model model.build(loss='cross_entropy', optimizer=tf.train.GradientDescentOptimizer(0.01)) return model
def typical(th, cells): assert isinstance(th, Config) # Initiate a model model = Classifier(mark=th.mark, net_type=Recurrent) # Add layers model.add(Input(sample_shape=th.input_shape, dtype=tf.int32)) model.add(Onehot(depth=th.num_classes)) emb_init = tf.initializers.random_uniform(-1, 1) model.add(Dense(th.hidden_dim, use_bias=False, weight_initializer=emb_init)) if th.input_dropout > 0: model.add(Dropout(1 - th.input_dropout)) # Add hidden layers if not isinstance(cells, (list, tuple)): cells = [cells] for cell in cells: model.add(cell) # Build model and return output_and_build(model, th) return model
def lstm_test(th): assert isinstance(th, Config) # Initiate model th.mark = 'lstm_' + th.mark model = Classifier(mark=th.mark, net_type=Recurrent) # Add input layer model.add(Input(sample_shape=[th.memory_depth])) # Add hidden layers for _ in range(th.num_blocks): model.add(BasicLSTMCell(th.hidden_dim, with_peepholes=False)) # Add output layer model.add(Linear(output_dim=41)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def lstm0(th): assert isinstance(th, Config) th.mark = 'lstm_' + th.mark # Initiate a model model = Classifier(mark=th.mark, net_type=Recurrent) # Add input layer model.add(Input(sample_shape=th.input_shape)) # Add lstm cells for dim in th.rc_dims: model.add(BasicLSTMCell(state_size=dim)) # Add output layer model.add(Linear(output_dim=th.output_dim)) # Build model optimizer = tf.train.AdamOptimizer(th.learning_rate) model.build(optimizer) return model
def conv_2d_test(th): assert isinstance(th, Config) # Initiate model th.mark = 'cnn_2d' + th.mark def data_dim(sample_rate=44100, duration=2, n_mfcc=40): audio_length = sample_rate * duration dim = (n_mfcc, 1 + int(np.floor(audio_length / 512)), 1) return dim dim = data_dim() model = Classifier(mark=th.mark) # Add input layer model.add(Input(sample_shape=[dim[0], dim[1], 1])) # Add hidden layers model.add(Conv2D(32, (4, 10), padding='same')) model.add(BatchNorm()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.7)) model.add(Conv2D(32, (4, 10), padding='same')) model.add(BatchNorm()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.7)) model.add(Conv2D(32, (4, 10), padding='same')) model.add(BatchNorm()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.7)) model.add(Conv2D(32, (4, 10), padding='same')) model.add(BatchNorm()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # model.add(Dropout(0.7)) model.add(Flatten()) model.add(Linear(output_dim=64)) model.add(BatchNorm()) model.add(Activation('relu')) # Add output layer model.add(Linear(output_dim=41)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def ka_convnet(mark): model = Classifier(mark=mark) model.add(Input(sample_shape=config.sample_shape)) strength = 1e-5 def ConvLayer(filters, bn=False): model.add( Conv2D(filters=filters, kernel_size=5, padding='same', kernel_regularizer=regularizers.L2(strength=strength))) if bn: model.add(BatchNorm()) model.add(Activation.ReLU()) # Define structure ConvLayer(32) model.add(Dropout(0.5)) ConvLayer(32, False) model.add(Dropout(0.5)) model.add(MaxPool2D(2, 2, 'same')) ConvLayer(64, True) model.add(Dropout(0.5)) model.add(MaxPool2D(2, 2, 'same')) model.add(Flatten()) model.add(Linear(128)) model.add(Activation.ReLU()) # model.add(Dropout(0.5)) model.add(Linear(10)) # Build model model.build(optimizer=tf.train.AdamOptimizer(learning_rate=1e-4)) return model
def deep_conv(mark): # Initiate predictor model = Classifier(mark=mark) model.add(Input(sample_shape=config.sample_shape)) def ConvBNReLU(filters, strength=1.0, bn=True): model.add( Conv2D(filters=filters, kernel_size=5, padding='same', kernel_regularizer=regularizers.L2(strength=strength))) if bn: model.add(BatchNorm()) model.add(Activation('relu')) # Conv layers reg = 1e-5 ConvBNReLU(32, reg) model.add(Dropout(0.5)) ConvBNReLU(32, reg) model.add(MaxPool2D(2, 2, 'same')) ConvBNReLU(64, reg) model.add(Dropout(0.5)) ConvBNReLU(64, reg) model.add(MaxPool2D(2, 2, 'same')) ConvBNReLU(128, reg) # FC layers model.add(Flatten()) model.add(Linear(256)) # model.add(BatchNorm()) model.add(Activation('relu')) model.add(Linear(256)) # model.add(BatchNorm()) model.add(Activation('relu')) model.add(Linear(config.y_dim)) # Build model model.build(optimizer=tf.train.AdamOptimizer(learning_rate=1e-4)) return model
def multinput_mlp(th): assert isinstance(th, Config) model = Classifier(mark=th.mark) def data_dim(sample_rate=16000, duration=2, n_mfcc=50): audio_length = sample_rate * duration dim = (n_mfcc, 1 + int(np.floor(audio_length / 512)), 1) return dim dim = data_dim() # Add hidden layers subnet = model.add(inter_type=model.CONCAT) subsubnet = subnet.add() subsubnet.add(Input(sample_shape=[32000, 1])) subsubnet.add(Linear(output_dim=512)) subsubnet.add(Activation('relu')) subsubnet.add(Linear(output_dim=256)) subsubnet.add(Activation('relu')) subsubnet = subnet.add() subsubnet.add(Input(sample_shape=[dim[0], dim[1], 1], name='mfcc')) subsubnet.add(Conv2D(32, (4, 10), padding='same')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(0.8)) # subsubnet.add(Conv2D(32, (4, 10), padding='same')) # subsubnet.add(BatchNorm()) # subsubnet.add(Activation('relu')) # subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) # subsubnet.add(Dropout(0.8)) subsubnet.add(Conv2D(32, (4, 10), padding='same')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(0.7)) subsubnet.add(Flatten()) model.add(Linear(output_dim=128)) model.add(BatchNorm()) model.add(Activation('relu')) model.add(Linear(output_dim=64)) model.add(BatchNorm()) model.add(Activation('relu')) model.add(Linear(output_dim=64)) model.add(BatchNorm()) model.add(Activation('relu')) # Add output layer model.add(Linear(output_dim=41)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def res_00(th): assert isinstance(th, Config) model = Classifier(mark=th.mark) def data_dim(sample_rate=16000, duration=2, n_mfcc=50): audio_length = sample_rate * duration dim = (n_mfcc, 1 + int(np.floor(audio_length / 512)), 1) return dim dim = data_dim() # Add hidden layers subnet = model.add(inter_type=model.CONCAT) # the net to process raw data subsubnet = subnet.add() # subsubnet.add(Input(sample_shape=[32000, 1], name='raw_data')) subsubnet.add(Input(sample_shape=[32000, 1])) subsubnet.add(Conv1D(filters=16, kernel_size=9, padding='valid')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(Conv1D(filters=16, kernel_size=9, padding='valid')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool1D(pool_size=16, strides=16)) subsubnet.add(Dropout(th.raw_keep_prob)) subsubnet.add(Conv1D(filters=32, kernel_size=3, padding='valid')) subsubnet.add(Activation('relu')) subsubnet.add(Conv1D(filters=32, kernel_size=3, padding='valid')) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool1D(pool_size=4, strides=4)) subsubnet.add(Dropout(th.raw_keep_prob)) subsubnet.add(Conv1D(filters=32, kernel_size=3, padding='valid')) subsubnet.add(Activation('relu')) subsubnet.add(Conv1D(filters=32, kernel_size=3, padding='valid')) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool1D(pool_size=4, strides=4)) subsubnet.add(Conv1D(filters=256, kernel_size=3, padding='valid')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(Conv1D(filters=256, kernel_size=3, padding='valid')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(GlobalMaxPooling1D()) # the net to process mfcc features subsubnet = subnet.add() subsubnet.add(Input(sample_shape=[dim[0], dim[1], 1], name='mfcc')) subsubnet.add(Conv2D(32, (4, 10), padding='same')) subsubnet.add(BatchNorm()) subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(th.mfcc_keep_prob)) net = subsubnet.add(ResidualNet()) net.add(Conv2D(32, (4, 10), padding='same')) net.add(BatchNorm()) net.add_shortcut() subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(th.mfcc_keep_prob)) # net = subsubnet.add(ResidualNet()) net.add(Conv2D(32, (4, 10), padding='same')) net.add(BatchNorm()) net.add_shortcut() subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(th.mfcc_keep_prob)) net = subsubnet.add(ResidualNet()) net.add(Conv2D(32, (4, 10), padding='same')) net.add(BatchNorm()) net.add_shortcut() subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(th.mfcc_keep_prob)) net = subsubnet.add(ResidualNet()) net.add(Conv2D(32, (4, 10), padding='same')) net.add(BatchNorm()) net.add_shortcut() subsubnet.add(Activation('relu')) subsubnet.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2))) subsubnet.add(Dropout(th.mfcc_keep_prob)) subsubnet.add(Flatten()) subsubnet.add(Dropout(th.concat_keep_prob)) model.add(Linear(output_dim=128)) model.add(BatchNorm()) model.add(Activation('relu')) # model.add(Linear(output_dim=64)) model.add(BatchNorm()) model.add(Activation('relu')) # Add output layer model.add(Linear(output_dim=41)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def conv_test(th): assert isinstance(th, Config) # Initiate model th.mark = 'cnn' + th.mark model = Classifier(mark=th.mark) # Add input layer model.add(Input(sample_shape=[32000, 1])) # Add hidden layers model.add(Conv1D(filters=16, kernel_size=9, padding='valid')) model.add(Activation('relu')) model.add(Conv1D(filters=16, kernel_size=9, padding='valid')) model.add(Activation('relu')) model.add(MaxPool1D(pool_size=16, strides=16)) # model.add(Dropout(0.9)) model.add(Conv1D(filters=32, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(Conv1D(filters=32, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(MaxPool1D(pool_size=4, strides=4)) # model.add(Dropout(0.9)) model.add(Conv1D(filters=32, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(Conv1D(filters=32, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(MaxPool1D(pool_size=4, strides=4)) # model.add(Dropout(0.9)) # model.add(Conv1D(filters=256, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(Conv1D(filters=256, kernel_size=3, padding='valid')) model.add(Activation('relu')) model.add(GlobalMaxPooling1D()) # model.add(Dropout(0.8)) # model.add(Linear(output_dim=64)) model.add(Activation('relu')) model.add(Linear(output_dim=1028)) model.add(Activation('relu')) # Add output layer model.add(Linear(output_dim=41)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def mlp(th): assert isinstance(th, Config) # Initiate a model model = Classifier(mark=th.mark) # Add input layer model.add(Input(sample_shape=th.input_shape)) model.add(Flatten()) # Add hidden layers assert isinstance(th.fc_dims, list) for dim in th.fc_dims: model.add(Linear(output_dim=dim)) model.add(BatchNormalization()) model.add(Activation(th.actype1)) # Add output layer model.add(Linear(output_dim=th.num_classes)) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model
def mlp(th): assert isinstance(th, Config) # Initiate a model model = Classifier(mark=th.mark) # Add input layer model.add(Input([32000])) # Add hidden layers for _ in range(th.num_blocks): model.add(Linear(output_dim=th.hidden_dim)) model.add(BatchNorm()) # model.add(BatchNormalization()) model.add(Activation(th.actype1)) # model.add(Dropout(0.9)) # Add output layer model.add(Linear(output_dim=th.num_classes)) model.add(Activation('softmax')) # Build model optimizer = tf.train.AdamOptimizer(learning_rate=th.learning_rate) model.build(optimizer=optimizer) return model