예제 #1
0
def train(trial: Trial):
    context = Optuna.get_optuna_conext('minist_optuna', trial)
    print("New trial ", trial.number, "++++++++++++++++++++++++++++", context)
    ENABLE_SUSPEND_RESUME_TRAINING()

    print(context)
    Optuna.suggest_float(name='lr', low=1e-6, high=1e-2, log=True)
    train, train_len = Mnist.get_train_dataset()
    validation, validation_len = Mnist.get_test_dataset()

    train = train.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    validation = validation.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop",
                                               lr=Optuna.get_value(
                                                   'lr', default=0.1))
    model = SimpleClassificationModel.get_model(input_shape=(IMAGE_SIZE,
                                                             IMAGE_SIZE, 1),
                                                classes=CLASS_NUM)
    callbacks = CallbackBuilder.get_callbacks(tensorboard=True,
                                              reduce_lr_on_plateau=True,
                                              reduce_patience=5,
                                              reduce_factor=0.25,
                                              early_stopping_patience=16)
    history = TrainingExecutor.train_classification(
        train_data=train,
        train_size=train_len,
        batch_size=BATCH_SIZE,
        validation_data=validation,
        validation_size=validation_len,
        shuffle_size=SHUFFLE_SIZE,
        model=model,
        callbacks=callbacks,
        optimizer=optimizer,
        loss="categorical_crossentropy",
        max_epoch=EPOCHS)

    return history.history['val_loss'][-1]
예제 #2
0
파일: mnist.py 프로젝트: kitfactory/colab
if __name__ == '__main__':

    context = Context.init_context(
        TRAINING_NAME="20200519141141")  #   .TRAINING_NAME:})
    ENABLE_SUSPEND_RESUME_TRAIN()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 20
    SHUFFLE_SIZE = 1000

    train, train_len = Mnist.get_train_dataset()
    validation, validation_len = Mnist.get_test_dataset()
    train = train.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    validation = validation.map(ImageDatasetUtil.image_reguralization()).map(
        ImageDatasetUtil.one_hot(CLASS_NUM))
    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop")
    model = SimpleClassificationModel.get_model(input_shape=(IMAGE_SIZE,
                                                             IMAGE_SIZE, 1),
                                                classes=CLASS_NUM)
    callbacks = CallbackBuilder.get_callbacks(tensorboard=False,
                                              reduce_lr_on_plateau=True,
                                              reduce_patience=3,
                                              reduce_factor=0.25,
                                              early_stopping_patience=5)
    ImageTrain.train_image_classification(train_data=train,
                                          train_size=train_len,
                                          batch_size=BATCH_SIZE,
                                          validation_data=validation,
예제 #3
0
    context = Context.init_context(
        TRAINING_BASE_DIR="tmp",
        TRAINING_NAME="resume_test"
    )

    ENABLE_SUSPEND_RESUME_TRAIN()

    BATCH_SIZE = 500
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 3
    SHUFFLE_SIZE = 1000
    BASEDIR = "./tmp"
    TRAIN_NAME = "resume_test"

    # if IS_SUSPEND_RESUME_TRAIN() == True and IS_ON_COLABOLATORY_WITH_GOOGLE_DRIVE()== True:
    

    train, train_len = Mnist.get_train_dataset()
    validation, validation_len = Mnist.get_test_dataset()

    train = train.map(ImageDatasetUtil.image_reguralization()).map(ImageDatasetUtil.one_hot(CLASS_NUM))
    validation = validation.map(ImageDatasetUtil.image_reguralization()).map(ImageDatasetUtil.one_hot(CLASS_NUM))
    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop")
    model = SimpleClassificationModel.get_model(input_shape=(IMAGE_SIZE,IMAGE_SIZE,1),classes=CLASS_NUM)

    callbacks = CallbackBuilder.get_callbacks(tensorboard=False, reduce_lr_on_plateau=True,reduce_patience=5,reduce_factor=0.25,early_stopping_patience=16)
    
    ImageTrain.train_image_classification(train_data=train,train_size=train_len,batch_size=BATCH_SIZE,validation_data=validation,validation_size=validation_len,shuffle_size=SHUFFLE_SIZE,model=model,callbacks=callbacks,optimizer=optimizer,loss="categorical_crossentropy",max_epoch=EPOCHS)
예제 #4
0
    BATCH_SIZE = 10

    # BATCH_SIZE = 48
    CLASS_NUM = 2
    IMAGE_SIZE = 150
    EPOCHS = 100

    train, train_len = ImageLabelFolderDataset.get_train_dataset(name="dogs-vs-cats", manual_dir="tmp")
    validation, validation_len = ImageLabelFolderDataset.get_validation_dataset(name="dogs-vs-cats", manual_dir="tmp")

    # dataset,dataset_len = CatsVsDogs.get_train_dataset()
    # dataset = dataset.map(ImageDatasetUtil.resize_with_crop_or_pad(IMAGE_SIZE,IMAGE_SIZE))
    # (train, train_len), (validation, validation_len) = ImageDatasetUtil.devide_train_validation(dataset,dataset_len,0.90)

    train = train.map(ImageDatasetUtil.resize_with_crop_or_pad(IMAGE_SIZE,IMAGE_SIZE),num_parallel_calls=tf.data.experimental.AUTOTUNE).map(ImageAugument.randaugment_map(1,2))
    train = train.map(ImageDatasetUtil.image_reguralization(),num_parallel_calls=tf.data.experimental.AUTOTUNE).map(ImageDatasetUtil.one_hot(CLASS_NUM),num_parallel_calls=tf.data.experimental.AUTOTUNE).apply(ImageAugument.mixup_apply(200,0.1))
    validation = validation.map(ImageDatasetUtil.resize_with_crop_or_pad(IMAGE_SIZE,IMAGE_SIZE),num_parallel_calls=tf.data.experimental.AUTOTUNE).map(ImageDatasetUtil.image_reguralization(),num_parallel_calls=tf.data.experimental.AUTOTUNE).map(ImageDatasetUtil.one_hot(CLASS_NUM),num_parallel_calls=tf.data.experimental.AUTOTUNE)

    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop")
    model = ResNetD18.get_model(input_shape=(IMAGE_SIZE,IMAGE_SIZE,3),classes=CLASS_NUM,resnest=True,resnet_c=True,resnet_d=True,mish=True)
    # model = SimpleClassificationModel.get_model(input_shape=(IMAGE_SIZE,IMAGE_SIZE,3),classes=CLASS_NUM)
    callbacks = CallbackBuilder.get_callbacks(base_dir = "tmp" , tensorboard=True, save_weights=True, consine_annealing=False, reduce_lr_on_plateau=True,reduce_patience=5,reduce_factor=0.25,early_stopping_patience=8)
    Trainer.train_classification(train_data=train,train_size=train_len,batch_size=BATCH_SIZE,validation_data=validation,validation_size=validation_len,shuffle_size=1000,model=model,callbacks=callbacks,optimizer=optimizer,loss="binary_crossentropy",max_epoch=EPOCHS)
    
    """
    train, train_len = RockPaperScissors.get_train_dataset()
    validation, validation_len = Place365Small.get_validation_dataset()
    train = train.map(ImageDatasetUtil.resize_with_crop_or_pad(IMAGE_SIZE,IMAGE_SIZE))
    validation = validation.map(ImageDatasetUtil.resize_with_crop_or_pad(IMAGE_SIZE,IMAGE_SIZE))
    dataset, len  = MVTecAd.get_train_dataset(type="bottle")
    print(dataset)
예제 #5
0
    tftk.ENABLE_MIXED_PRECISION()

    context = Context.init_context(TRAINING_NAME='DogsVsCats')
    train, train_len = ImageLabelFolderDataset.get_train_dataset(
        name="dogs-vs-cats", manual_dir="tmp")
    validation, validation_len = ImageLabelFolderDataset.get_validation_dataset(
        name="dogs-vs-cats", manual_dir="tmp")

    train = train.map(ImageDatasetUtil.map_max_square_crop_and_resize(
        IMAGE_SIZE, IMAGE_SIZE),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageAugument.randaugment_map(2, 4),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageDatasetUtil.image_reguralization(),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)
    train = train.map(ImageDatasetUtil.one_hot(CLASS_NUM),
                      num_parallel_calls=tf.data.experimental.AUTOTUNE)

    validation = validation.map(
        ImageDatasetUtil.map_max_square_crop_and_resize(
            IMAGE_SIZE, IMAGE_SIZE),
        num_parallel_calls=tf.data.experimental.AUTOTUNE)
    validation = validation.map(
        ImageDatasetUtil.image_reguralization(),
        num_parallel_calls=tf.data.experimental.AUTOTUNE)
    validation = validation.map(
        ImageDatasetUtil.one_hot(CLASS_NUM),
        num_parallel_calls=tf.data.experimental.AUTOTUNE)

    optimizer = OptimizerBuilder.get_optimizer(name="rmsprop")
    model = KerasResNet18.get_model(input_shape=(IMAGE_SIZE, IMAGE_SIZE,
예제 #6
0
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

import tftk
from tftk.image.dataset import Mnist
from tftk.image.dataset import ImageDatasetUtil
from tftk.image.augument import ImageAugument
from tftk.image.dataset import ImageLabelFolderDataset

if __name__ == '__main__':

    BATCH_SIZE = 100
    CLASS_NUM = 10
    IMAGE_SIZE = 28
    EPOCHS = 2
    SHUFFLE_SIZE = 1000

    train, train_len = ImageLabelFolderDataset.get_train_dataset(name="dogs-vs-cats", manual_dir="tmp")

    train = train.map(ImageDatasetUtil.resize_with_crop_or_pad(224,224)).map(ImageDatasetUtil.one_hot(2))
    train = train.map(ImageDatasetUtil.image_reguralization()).apply(ImageAugument.mixup_apply(mixup_size=100, alpha=0.2))

    for d in train.take(1):
        image = d["image"] * 255
        image = tf.cast(image, tf.uint8)
        print(image)
        image = image.numpy()
        y = d["label"]
        print("y",d["label"].numpy())
        im = Image.fromarray(image)
        im.show()