예제 #1
0
 def test_taxi_pipeline_check_dag_construction(self):
   airflow_config = {
       'schedule_interval': None,
       'start_date': datetime.datetime(2019, 1, 1),
   }
   logical_pipeline = taxi_pipeline_portable_beam._create_pipeline()
   self.assertEqual(9, len(logical_pipeline.components))
   TfxRunner(airflow_config).run(logical_pipeline)
예제 #2
0
 def test_taxi_pipeline_check_dag_construction(self):
     airflow_config = {
         'schedule_interval': None,
         'start_date': datetime.datetime(2019, 1, 1),
     }
     logical_pipeline = taxi_pipeline_simple._create_pipeline()
     self.assertEqual(9, len(logical_pipeline.components))
     pipeline = TfxRunner(airflow_config).run(logical_pipeline)
     self.assertIsInstance(pipeline, models.DAG)
예제 #3
0
      transformed_examples=transform.outputs.transformed_examples,
      schema=infer_schema.outputs.output,
      transform_output=transform.outputs.transform_output,
      train_steps=10000,
      eval_steps=5000,
      warm_starting=True)

  # Uses TFMA to compute a evaluation statistics over features of a model.
  model_analyzer = Evaluator(
      examples=example_gen.outputs.examples,
      model_exports=trainer.outputs.output)

  # Performs quality validation of a candidate model (compared to a baseline).
  model_validator = ModelValidator(
      examples=example_gen.outputs.examples, model=trainer.outputs.output)

  # Checks whether the model passed the validation steps and pushes the model
  # to a file destination if check passed.
  pusher = Pusher(
      model_export=trainer.outputs.output,
      model_blessing=model_validator.outputs.blessing,
      serving_model_dir=serving_model_dir)

  return [
      example_gen, statistics_gen, infer_schema, validate_stats, transform,
      trainer, model_analyzer, model_validator, pusher
  ]


pipeline = TfxRunner(airflow_config).run(create_pipeline())