예제 #1
0
            def cmp(a_shp, b_shp):

                a = numpy.random.randn(* a_shp).astype(numpy.float32)
                b = numpy.random.randn(* b_shp).astype(numpy.float32)

                x = tensor.ftensor3()
                y = tensor.ftensor3()

                f = theano.function([x, y],
                                    batched_dot(x, y),
                                    mode=mode_with_gpu)

                z0 = numpy.asarray(f(a, b))

                ga = cuda_ndarray.CudaNdarray(a)
                gb = cuda_ndarray.CudaNdarray(b)

                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)
                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)

                unittest_tools.assert_allclose(z0, z_test)
                unittest_tools.assert_allclose(z1, z_test)
예제 #2
0
        def fail(a_shp, b_shp):

            a = numpy.random.randn(*a_shp).astype(numpy.float32)
            b = numpy.random.randn(*b_shp).astype(numpy.float32)

            x = tensor.ftensor3()
            y = tensor.ftensor3()

            f = theano.function([x, y], batched_dot(x, y), mode=mode_with_gpu)

            z = f(a, b)
예제 #3
0
파일: test_blas.py 프로젝트: daxlab/Theano
        def fail(a_shp, b_shp):

            a=numpy.random.randn(*a_shp).astype(numpy.float32)
            b=numpy.random.randn(*b_shp).astype(numpy.float32)

            x=tensor.ftensor3()
            y=tensor.ftensor3()

            f=theano.function([x,y], batched_dot(x,y), mode=mode_with_gpu)

            z = f(a,b)
예제 #4
0
 def get_output(self, train):
     X = self.get_input(train)
     output = self.activation(batched_dot(self.W, X.dimshuffle(1, 2, 0)).dimshuffle(2, 0, 1) +
                              self.b)
     return output