def test_bad_size(self): R = MRG_RandomStream(234) for size in [ (0, 100), (-1, 100), (1, 0), ]: with pytest.raises(ValueError): R.uniform(size) with pytest.raises(ValueError): R.binomial(size) with pytest.raises(ValueError): R.multinomial(size, 1, []) with pytest.raises(ValueError): R.normal(size) with pytest.raises(ValueError): R.truncated_normal(size)
def test_undefined_grad_opt(): # Make sure that undefined grad get removed in optimized graph. random = MRG_RandomStream(np.random.randint(1, 2147462579)) pvals = theano.shared(np.random.rand(10, 20).astype(theano.config.floatX)) pvals = pvals / pvals.sum(axis=1) pvals = theano.gradient.zero_grad(pvals) samples = random.multinomial(pvals=pvals, n=1) samples = theano.tensor.cast(samples, pvals.dtype) samples = theano.gradient.zero_grad(samples) cost = theano.tensor.sum(samples + pvals) grad = theano.tensor.grad(cost, samples) f = theano.function([], grad) assert not any([ isinstance(node.op, theano.gradient.UndefinedGrad) for node in f.maker.fgraph.apply_nodes ])
def test_target_parameter(): srng = MRG_RandomStream() pvals = np.array([[0.98, 0.01, 0.01], [0.01, 0.49, 0.50]]) def basic_target_parameter_test(x): f = theano.function([], x) assert isinstance(f(), np.ndarray) basic_target_parameter_test(srng.uniform((3, 2), target="cpu")) basic_target_parameter_test(srng.normal((3, 2), target="cpu")) basic_target_parameter_test(srng.truncated_normal((3, 2), target="cpu")) basic_target_parameter_test(srng.binomial((3, 2), target="cpu")) basic_target_parameter_test( srng.multinomial(pvals=pvals.astype("float32"), target="cpu")) basic_target_parameter_test( srng.choice(p=pvals.astype("float32"), replace=False, target="cpu")) basic_target_parameter_test( srng.multinomial_wo_replacement(pvals=pvals.astype("float32"), target="cpu"))
def test_multinomial(): steps = 100 if (config.mode in ["DEBUG_MODE", "DebugMode", "FAST_COMPILE"] or config.mode == "Mode" and config.linker in ["py"]): sample_size = (49, 5) else: sample_size = (450, 6) pvals = np.asarray(np.random.uniform(size=sample_size)) pvals = np.apply_along_axis(lambda row: row / np.sum(row), 1, pvals) R = MRG_RandomStream(234) # Note: we specify `nstreams` to avoid a warning. m = R.multinomial(pvals=pvals, dtype=config.floatX, nstreams=30 * 256) f = theano.function([], m) f() basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1, prefix="mrg ")
def test_multinomial_n_samples(): if (config.mode in ["DEBUG_MODE", "DebugMode", "FAST_COMPILE"] or config.mode == "Mode" and config.linker in ["py"]): sample_size = (49, 5) else: sample_size = (450, 6) pvals = np.asarray(np.random.uniform(size=sample_size)) pvals = np.apply_along_axis(lambda row: row / np.sum(row), 1, pvals) R = MRG_RandomStream(234) for n_samples, steps in zip([5, 10, 100, 1000], [20, 10, 1, 1]): m = R.multinomial(pvals=pvals, n=n_samples, dtype=config.floatX, nstreams=30 * 256) f = theano.function([], m) basic_multinomialtest(f, steps, sample_size, pvals, n_samples, prefix="mrg ") sys.stdout.flush()
def test_undefined_grad(): srng = MRG_RandomStream(seed=1234) # checking uniform distribution low = tensor.scalar() out = srng.uniform((), low=low) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, low) high = tensor.scalar() out = srng.uniform((), low=0, high=high) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, high) out = srng.uniform((), low=low, high=high) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, (low, high)) # checking binomial distribution prob = tensor.scalar() out = srng.binomial((), p=prob) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, prob) # checking multinomial distribution prob1 = tensor.scalar() prob2 = tensor.scalar() p = [theano.tensor.as_tensor_variable([prob1, 0.5, 0.25])] out = srng.multinomial(size=None, pvals=p, n=4)[0] with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(theano.tensor.sum(out), prob1) p = [theano.tensor.as_tensor_variable([prob1, prob2])] out = srng.multinomial(size=None, pvals=p, n=4)[0] with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(theano.tensor.sum(out), (prob1, prob2)) # checking choice p = [theano.tensor.as_tensor_variable([prob1, prob2, 0.1, 0.2])] out = srng.choice(a=None, size=1, p=p, replace=False)[0] with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out[0], (prob1, prob2)) p = [theano.tensor.as_tensor_variable([prob1, prob2])] out = srng.choice(a=None, size=1, p=p, replace=False)[0] with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out[0], (prob1, prob2)) p = [theano.tensor.as_tensor_variable([prob1, 0.2, 0.3])] out = srng.choice(a=None, size=1, p=p, replace=False)[0] with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out[0], prob1) # checking normal distribution avg = tensor.scalar() out = srng.normal((), avg=avg) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, avg) std = tensor.scalar() out = srng.normal((), avg=0, std=std) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, std) out = srng.normal((), avg=avg, std=std) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, (avg, std)) # checking truncated normal distribution avg = tensor.scalar() out = srng.truncated_normal((), avg=avg) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, avg) std = tensor.scalar() out = srng.truncated_normal((), avg=0, std=std) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, std) out = srng.truncated_normal((), avg=avg, std=std) with pytest.raises(theano.gradient.NullTypeGradError): theano.grad(out, (avg, std))