예제 #1
0
 def opt(node):
     if (isinstance(node.op, GpuElemwise)
             and node.op.scalar_op == scal.add and node.nin == 2):
         targ = find_node(node.inputs[0], cls)
         W = node.inputs[1]
         if targ is None:
             targ = find_node(node.inputs[1], cls)
             W = node.inputs[0]
         if targ is None:
             return None
         if W.dtype != targ.outputs[0].dtype:
             return None
         if not is_equal(targ.inputs[beta_in], 0.0):
             # other cases are too complex for now
             return None
         if W.broadcastable != targ.inputs[out_in].broadcastable:
             # Would need to explicitly tile the output to fill
             # the full shape here.  Disable for now.
             return None
         inputs = list(targ.inputs)
         inputs[out_in] = W
         dtype = inputs[beta_in].dtype
         one = scal.constant(np.asarray(1.0, dtype=dtype))
         inputs[beta_in] = one
         with inherit_stack_trace(node.outputs):
             return maker(targ, *inputs)
예제 #2
0
 def opt(node):
     if (isinstance(node.op, GpuElemwise) and
             node.op.scalar_op == scal.add and
             node.nin == 2):
         targ = find_node(node.inputs[0], cls)
         W = node.inputs[1]
         if targ is None:
             targ = find_node(node.inputs[1], cls)
             W = node.inputs[0]
         if targ is None:
             return None
         if W.dtype != targ.outputs[0].dtype:
             return None
         if not is_equal(targ.inputs[beta_in], 0.0):
             # other cases are too complex for now
             return None
         if W.broadcastable != targ.inputs[out_in].broadcastable:
             # Would need to explicitly tile the output to fill
             # the full shape here.  Disable for now.
             return None
         inputs = list(targ.inputs)
         inputs[out_in] = W
         dtype = inputs[beta_in].dtype
         one = scal.constant(np.asarray(1.0, dtype=dtype))
         inputs[beta_in] = one
         with inherit_stack_trace(node.outputs):
             return maker(targ, *inputs)
예제 #3
0
파일: nerv.py 프로젝트: xzm2004260/Theano
def ensure_float(val, name):
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name, ))
    if not val.type.dtype == 'float32':
        raise TypeError("%s: type is not float32" % (name, ))
    return val
예제 #4
0
def ensure_float(val, name):
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name,))
    if not val.type.dtype == 'float32':
        raise TypeError("%s: type is not float32" % (name,))
    return val
예제 #5
0
파일: dnn.py 프로젝트: hfinger/Theano
def ensure_dt(val, default, name, dtype):
    if val is None:
        val = default.clone()
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name,))
    if not val.type.dtype == dtype:
        val = val.astype(dtype)
    return val
예제 #6
0
파일: dnn.py 프로젝트: orhanf/Theano
def ensure_dt(val, default, name, dtype):
    if val is None:
        val = default.clone()
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name,))
    if not val.type.dtype == dtype:
        val = val.astype(dtype)
    return val
예제 #7
0
파일: opt_util.py 프로젝트: HapeMask/Theano
from __future__ import absolute_import, print_function, division
from functools import wraps

import numpy as np

from theano import tensor, scalar as scal, Constant
from theano.gof import local_optimizer
from theano.tensor import (DimShuffle, get_scalar_constant_value,
                           NotScalarConstantError)

from .basic_ops import GpuFromHost, HostFromGpu, GpuAllocEmpty, GpuReshape
from .elemwise import GpuDimShuffle, GpuElemwise

_one = scal.constant(np.asarray(1.0, dtype='float32'))


def grab_cpu_scalar(v, nd):
    """
    Get a scalar variable value from the tree at `v`.

    This function will dig through transfers and dimshuffles to get
    the constant value. If no such constant is found, it returns None.

    Parameters
    ----------
    v
        Theano variable to extract the constant value from.
    nd : int
        Expected number of dimensions for the variable (for
        broadcasted constants).
예제 #8
0
from functools import wraps

import numpy

from theano import scalar as scal, Constant
from theano.gof import local_optimizer
from theano.tensor import (DimShuffle, get_scalar_constant_value,
                           NotScalarConstantError)

from theano.sandbox.cuda.basic_ops import (GpuFromHost, HostFromGpu,
                                           host_from_gpu, GpuDimShuffle,
                                           GpuElemwise)

_one = scal.constant(numpy.asarray(1.0, dtype='float32'))


def grab_cpu_scalar(v, nd):
    if v.owner is not None:
        n = v.owner
        if (isinstance(n.op, GpuDimShuffle)
                and n.op.new_order == ('x', ) * nd):
            return host_from_gpu(n.inputs[0])
        elif (isinstance(n.op, DimShuffle) and n.op.new_order == ('x', ) * nd):
            return n.inputs[0]
        elif isinstance(n.op, GpuFromHost):
            return grab_cpu_scalar(n.inputs[0], nd=nd)
        else:
            return None
    else:
        if (isinstance(v, Constant) and v.broadcastable == (True, ) * nd):
            return v.dimshuffle(())
예제 #9
0
파일: dnn.py 프로젝트: hfinger/Theano
        if len(self.subsample) > 2:
            sub2 = str(self.subsample[2])
        else:
            sub2 = '0'

        return [('NB_DIMS', str(len(self.subsample))),
                ('BORDER_MODE', bmode),
                ('PAD_0', pad0), ('PAD_1', pad1), ('PAD_2', pad2),
                ('CONV_MODE', conv_flag),
                ('SUB_0', sub0), ('SUB_1', sub1), ('SUB_2', sub2)]

    def c_code_cache_version(self):
        return (super(GpuDnnConvDesc, self).c_code_cache_version(), version())

# scalar constants
_zero = constant(numpy.asarray(0.0, dtype='float64'))
_one = constant(numpy.asarray(1.0, dtype='float64'))


def ensure_dt(val, default, name, dtype):
    if val is None:
        val = default.clone()
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name,))
    if not val.type.dtype == dtype:
        val = val.astype(dtype)
    return val
예제 #10
0
파일: opt_util.py 프로젝트: cfsmile/Theano
from __future__ import absolute_import, print_function, division
from functools import wraps

import numpy

from theano import scalar as scal, Constant
from theano.gof import local_optimizer
from theano.tensor import DimShuffle, get_scalar_constant_value, NotScalarConstantError

from .basic_ops import GpuFromHost, HostFromGpu, GpuAllocEmpty
from .elemwise import GpuDimShuffle, GpuElemwise

_one = scal.constant(numpy.asarray(1.0, dtype="float64"))


def grab_cpu_scalar(v, nd):
    """
    Get a scalar variable value from the tree at `v`.

    This function will dig through transfers and dimshuffles to get
    the constant value. If no such constant is found, it returns None.

    Parameters
    ----------
    v
        Theano variable to extract the constant value from.
    nd : int
        Expected number of dimensions for the variable (for
        broadcasted constants).

    """
예제 #11
0
파일: dnn.py 프로젝트: orhanf/Theano
        if len(self.subsample) > 2:
            sub2 = str(self.subsample[2])
        else:
            sub2 = '0'

        return [('NB_DIMS', str(len(self.subsample))),
                ('BORDER_MODE', bmode),
                ('PAD_0', pad0), ('PAD_1', pad1), ('PAD_2', pad2),
                ('CONV_MODE', conv_flag),
                ('SUB_0', sub0), ('SUB_1', sub1), ('SUB_2', sub2)]

    def c_code_cache_version(self):
        return (super(GpuDnnConvDesc, self).c_code_cache_version(), version())

# scalar constants
_zero = constant(numpy.asarray(0.0, dtype='float64'))
_one = constant(numpy.asarray(1.0, dtype='float64'))


def ensure_dt(val, default, name, dtype):
    if val is None:
        val = default.clone()
    if not isinstance(val, Variable):
        val = constant(val)
    if hasattr(val, 'ndim') and val.ndim == 0:
        val = as_scalar(val)
    if not isinstance(val.type, theano.scalar.Scalar):
        raise TypeError("%s: expected a scalar value" % (name,))
    if not val.type.dtype == dtype:
        val = val.astype(dtype)
    return val
예제 #12
0
파일: opt_util.py 프로젝트: aalmah/Theano
from functools import wraps

import numpy

from theano import scalar as scal, Constant
from theano.gof import local_optimizer
from theano.tensor import (DimShuffle, get_scalar_constant_value,
                           NotScalarConstantError)

from .basic_ops import GpuFromHost, HostFromGpu, GpuAllocEmpty
from .elemwise import GpuDimShuffle, GpuElemwise

_one = scal.constant(numpy.asarray(1.0, dtype='float64'))


def grab_cpu_scalar(v, nd):
    """
    Get a scalar variable value from the tree at `v`.

    This function will dig through transfers and dimshuffles to get
    the constant value. If no such constant is found, it returns None.

    Parameters
    ----------
    v : variable
        Theano variable to extract the constant value from.
    nd : int
        Expected number of dimensions for the variable (for
        broadcasted constants).

    """
예제 #13
0
from __future__ import absolute_import, print_function, division
from functools import wraps

import numpy

from theano import scalar as scal, Constant, config
from theano.gof import local_optimizer
from theano.tensor import (DimShuffle, get_scalar_constant_value,
                           NotScalarConstantError)

from .basic_ops import GpuFromHost, HostFromGpu, GpuAllocEmpty
from .elemwise import GpuDimShuffle, GpuElemwise

_one = scal.constant(numpy.asarray(1.0, dtype=config.floatX))


def grab_cpu_scalar(v, nd):
    """
    Get a scalar variable value from the tree at `v`.

    This function will dig through transfers and dimshuffles to get
    the constant value. If no such constant is found, it returns None.

    Parameters
    ----------
    v
        Theano variable to extract the constant value from.
    nd : int
        Expected number of dimensions for the variable (for
        broadcasted constants).
예제 #14
0
파일: opt_util.py 프로젝트: flowgrad/Theano
from __future__ import absolute_import, print_function, division
from functools import wraps

import numpy

from theano import scalar as scal, Constant, config
from theano.gof import local_optimizer
from theano.tensor import (DimShuffle, get_scalar_constant_value,
                           NotScalarConstantError)

from .basic_ops import GpuFromHost, HostFromGpu, GpuAllocEmpty
from .elemwise import GpuDimShuffle, GpuElemwise

_one = scal.constant(numpy.asarray(1.0, dtype=config.floatX))


def grab_cpu_scalar(v, nd):
    """
    Get a scalar variable value from the tree at `v`.

    This function will dig through transfers and dimshuffles to get
    the constant value. If no such constant is found, it returns None.

    Parameters
    ----------
    v
        Theano variable to extract the constant value from.
    nd : int
        Expected number of dimensions for the variable (for
        broadcasted constants).