def test_bpr_train_and_test(): bpr = BPR(10, 200, 50) train_data = zip(randint(100, size=1000), randint(50, size=1000)) bpr.train(train_data, batch_size=50) assert(bpr.test(train_data) > 0.8) test_data = zip(randint(100, size=1000), randint(50, size=1000)) assert(bpr.test(test_data) > 0.4 and bpr.test(test_data) < 0.6)
def test_bpr_train_no_epochs(): bpr = BPR(10, 100, 50) train_data = zip(randint(100, size=1000), randint(50, size=1000)) bpr.train(train_data, epochs=0) assert(bpr.test(train_data) > 0.4 and bpr.test(train_data) < 0.6)
# You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from theano_bpr.utils import load_data_from_csv from theano_bpr import BPR import sys if len(sys.argv) != 3: print "Usage: ./example.py training_data.csv testing_data.csv" sys.exit(1) # Loading train data train_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[1]) # Loading test data test_data, users_to_index, items_to_index = load_data_from_csv( sys.argv[2], users_to_index, items_to_index) # Initialising BPR model, 10 latent factors bpr = BPR(10, len(users_to_index.keys()), len(items_to_index.keys())) # Training model, 30 epochs bpr.train(train_data, epochs=30) # Testing model print bpr.test(test_data)
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from theano_bpr.utils import load_data_from_csv from theano_bpr import BPR import sys if len(sys.argv) != 3: print "Usage: ./example.py training_data.csv testing_data.csv" sys.exit(1) # Loading train data train_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[1]) # Loading test data test_data, users_to_index, items_to_index = load_data_from_csv(sys.argv[2], users_to_index, items_to_index) # Initialising BPR model, 10 latent factors bpr = BPR(10, len(users_to_index.keys()), len(items_to_index.keys())) # Training model, 30 epochs bpr.train(train_data, epochs=30) # Testing model print bpr.test(test_data)