예제 #1
0
def build_text_classifier_v2(
    tok2vec: Model[List[Doc], List[Floats2d]],
    linear_model: Model[List[Doc], Floats2d],
    nO: Optional[int] = None,
) -> Model[List[Doc], Floats2d]:
    exclusive_classes = not linear_model.attrs["multi_label"]
    with Model.define_operators({">>": chain, "|": concatenate}):
        width = tok2vec.maybe_get_dim("nO")
        attention_layer = ParametricAttention(
            width)  # TODO: benchmark performance difference of this layer
        maxout_layer = Maxout(nO=width, nI=width)
        norm_layer = LayerNorm(nI=width)
        cnn_model = (
            tok2vec >> list2ragged() >> attention_layer >> reduce_sum() >>
            residual(maxout_layer >> norm_layer >> Dropout(0.0)))

        nO_double = nO * 2 if nO else None
        if exclusive_classes:
            output_layer = Softmax(nO=nO, nI=nO_double)
        else:
            output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
        model = (linear_model | cnn_model) >> output_layer
        model.set_ref("tok2vec", tok2vec)
    if model.has_dim("nO") is not False:
        model.set_dim("nO", nO)
    model.set_ref("output_layer", linear_model.get_ref("output_layer"))
    model.set_ref("attention_layer", attention_layer)
    model.set_ref("maxout_layer", maxout_layer)
    model.set_ref("norm_layer", norm_layer)
    model.attrs["multi_label"] = not exclusive_classes

    model.init = init_ensemble_textcat
    return model
예제 #2
0
def build_bow_text_classifier(
    exclusive_classes: bool,
    ngram_size: int,
    no_output_layer: bool,
    nO: Optional[int] = None,
) -> Model[List[Doc], Floats2d]:
    fill_defaults = {"b": 0, "W": 0}
    with Model.define_operators({">>": chain}):
        sparse_linear = SparseLinear(nO=nO)
        output_layer = None
        if not no_output_layer:
            fill_defaults["b"] = NEG_VALUE
            output_layer = softmax_activation() if exclusive_classes else Logistic()
        resizable_layer = resizable(
            sparse_linear,
            resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
        )
        model = extract_ngrams(ngram_size, attr=ORTH) >> resizable_layer
        model = with_cpu(model, model.ops)
        if output_layer:
            model = model >> with_cpu(output_layer, output_layer.ops)
    model.set_dim("nO", nO)
    model.set_ref("output_layer", sparse_linear)
    model.attrs["multi_label"] = not exclusive_classes
    model.attrs["resize_output"] = partial(
        resize_and_set_ref, resizable_layer=resizable_layer
    )
    return model
예제 #3
0
def build_text_classifier_lowdata(
        width: int,
        dropout: Optional[float],
        nO: Optional[int] = None) -> Model[List[Doc], Floats2d]:
    # Don't document this yet, I'm not sure it's right.
    # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
    with Model.define_operators({">>": chain, "**": clone}):
        model = (StaticVectors(width) >> list2ragged() >>
                 ParametricAttention(width) >> reduce_sum() >> residual(
                     Relu(width, width))**2 >> Linear(nO, width))
        if dropout:
            model = model >> Dropout(dropout)
        model = model >> Logistic()
    return model
def build_bow_text_classifier(
    exclusive_classes: bool,
    ngram_size: int,
    no_output_layer: bool,
    nO: Optional[int] = None,
) -> Model[List[Doc], Floats2d]:
    with Model.define_operators({">>": chain}):
        sparse_linear = SparseLinear(nO)
        model = extract_ngrams(ngram_size, attr=ORTH) >> sparse_linear
        model = with_cpu(model, model.ops)
        if not no_output_layer:
            output_layer = softmax_activation() if exclusive_classes else Logistic()
            model = model >> with_cpu(output_layer, output_layer.ops)
    model.set_ref("output_layer", sparse_linear)
    model.attrs["multi_label"] = not exclusive_classes
    return model
예제 #5
0
def build_simple_cnn_text_classifier(
        tok2vec: Model,
        exclusive_classes: bool,
        nO: Optional[int] = None) -> Model[List[Doc], Floats2d]:
    """
    Build a simple CNN text classifier, given a token-to-vector model as inputs.
    If exclusive_classes=True, a softmax non-linearity is applied, so that the
    outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
    is applied instead, so that outputs are in the range [0, 1].
    """
    fill_defaults = {"b": 0, "W": 0}
    with Model.define_operators({">>": chain}):
        cnn = tok2vec >> list2ragged() >> reduce_mean()
        nI = tok2vec.maybe_get_dim("nO")
        if exclusive_classes:
            output_layer = Softmax(nO=nO, nI=nI)
            fill_defaults["b"] = NEG_VALUE
            resizable_layer: Model = resizable(
                output_layer,
                resize_layer=partial(resize_linear_weighted,
                                     fill_defaults=fill_defaults),
            )
            model = cnn >> resizable_layer
        else:
            output_layer = Linear(nO=nO, nI=nI)
            resizable_layer = resizable(
                output_layer,
                resize_layer=partial(resize_linear_weighted,
                                     fill_defaults=fill_defaults),
            )
            model = cnn >> resizable_layer >> Logistic()
        model.set_ref("output_layer", output_layer)
        model.attrs["resize_output"] = partial(
            resize_and_set_ref,
            resizable_layer=resizable_layer,
        )
    model.set_ref("tok2vec", tok2vec)
    model.set_dim(
        "nO", nO
    )  # type: ignore  # TODO: remove type ignore once Thinc has been updated
    model.attrs["multi_label"] = not exclusive_classes
    return model
예제 #6
0
def test_spancat_model_forward_backward(nO=5):
    tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
    docs = get_docs()
    spans_list = []
    lengths = []
    for doc in docs:
        spans_list.append(doc[:2])
        spans_list.append(doc[1:4])
        lengths.append(2)
    spans = Ragged(
        tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
        tok2vec.ops.asarray(lengths, dtype="i"),
    )
    model = build_spancat_model(tok2vec, reduce_mean(),
                                chain(Relu(nO=nO),
                                      Logistic())).initialize(X=(docs, spans))

    Y, backprop = model((docs, spans), is_train=True)
    assert Y.shape == (spans.dataXd.shape[0], nO)
    backprop(Y)
def build_simple_cnn_text_classifier(
    tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
) -> Model[List[Doc], Floats2d]:
    """
    Build a simple CNN text classifier, given a token-to-vector model as inputs.
    If exclusive_classes=True, a softmax non-linearity is applied, so that the
    outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
    is applied instead, so that outputs are in the range [0, 1].
    """
    with Model.define_operators({">>": chain}):
        cnn = tok2vec >> list2ragged() >> reduce_mean()
        if exclusive_classes:
            output_layer = Softmax(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
            model = cnn >> output_layer
            model.set_ref("output_layer", output_layer)
        else:
            linear_layer = Linear(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
            model = cnn >> linear_layer >> Logistic()
            model.set_ref("output_layer", linear_layer)
    model.set_ref("tok2vec", tok2vec)
    model.set_dim("nO", nO)
    model.attrs["multi_label"] = not exclusive_classes
    return model
예제 #8
0
def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
    """An output layer for multi-label classification. It uses a linear layer
    followed by a logistic activation.
    """
    return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
예제 #9
0
def create_classification_layer(nO: int = None,
                                nI: int = None) -> Model[Floats2d, Floats2d]:
    with Model.define_operators({">>": chain}):
        return Linear(nO=nO, nI=nI) >> Logistic()
예제 #10
0
def test_spancat_model_init():
    model = build_spancat_model(build_Tok2Vec_model(**get_tok2vec_kwargs()),
                                reduce_mean(), Logistic())
    model.initialize()
예제 #11
0
def TextCatEnsemble_v1(
    width: int,
    embed_size: int,
    pretrained_vectors: Optional[bool],
    exclusive_classes: bool,
    ngram_size: int,
    window_size: int,
    conv_depth: int,
    dropout: Optional[float],
    nO: Optional[int] = None,
) -> Model:
    # Don't document this yet, I'm not sure it's right.
    cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
    with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
        lower = HashEmbed(nO=width,
                          nV=embed_size,
                          column=cols.index(LOWER),
                          dropout=dropout,
                          seed=10)
        prefix = HashEmbed(
            nO=width // 2,
            nV=embed_size,
            column=cols.index(PREFIX),
            dropout=dropout,
            seed=11,
        )
        suffix = HashEmbed(
            nO=width // 2,
            nV=embed_size,
            column=cols.index(SUFFIX),
            dropout=dropout,
            seed=12,
        )
        shape = HashEmbed(
            nO=width // 2,
            nV=embed_size,
            column=cols.index(SHAPE),
            dropout=dropout,
            seed=13,
        )
        width_nI = sum(
            layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
        trained_vectors = FeatureExtractor(cols) >> with_array(
            uniqued(
                (lower | prefix | suffix | shape) >> Maxout(
                    nO=width, nI=width_nI, normalize=True),
                column=cols.index(ORTH),
            ))
        if pretrained_vectors:
            static_vectors = StaticVectors(width)
            vector_layer = trained_vectors | static_vectors
            vectors_width = width * 2
        else:
            vector_layer = trained_vectors
            vectors_width = width
        tok2vec = vector_layer >> with_array(
            Maxout(width, vectors_width, normalize=True) >>
            residual((expand_window(window_size=window_size) >> Maxout(
                nO=width, nI=width *
                ((window_size * 2) + 1), normalize=True)))**conv_depth,
            pad=conv_depth,
        )
        cnn_model = (tok2vec >> list2ragged() >> ParametricAttention(width) >>
                     reduce_sum() >> residual(Maxout(nO=width, nI=width)) >>
                     Linear(nO=nO, nI=width) >> Dropout(0.0))

        linear_model = build_bow_text_classifier(
            nO=nO,
            ngram_size=ngram_size,
            exclusive_classes=exclusive_classes,
            no_output_layer=False,
        )
        nO_double = nO * 2 if nO else None
        if exclusive_classes:
            output_layer = Softmax(nO=nO, nI=nO_double)
        else:
            output_layer = Linear(nO=nO,
                                  nI=nO_double) >> Dropout(0.0) >> Logistic()
        model = (linear_model | cnn_model) >> output_layer
        model.set_ref("tok2vec", tok2vec)
    if model.has_dim("nO") is not False:
        model.set_dim("nO", nO)
    model.set_ref("output_layer", linear_model.get_ref("output_layer"))
    model.attrs["multi_label"] = not exclusive_classes
    return model