예제 #1
0
def FeatureExtracter(lang, attrs=[LOWER, SHAPE, PREFIX, SUFFIX], tokenized=True):
    nlp = get_spacy(lang, parser=False, tagger=False,
                           entity=False)
    nlp.vocab.lex_attr_getters[PREFIX] = lambda string: string[:3]
    nlp.vocab.lex_attr_getters[SUFFIX] = lambda string: string[-3:]
    def forward(texts, drop=0.):
        if tokenized:
            docs = [Doc(nlp.vocab, words) for words in texts]
        else:
            docs = [nlp(text) for text in texts]
        features = [doc.to_array(attrs) for doc in docs]
        def backward(d_features, sgd=None):
            return d_features
        return features, backward
    return layerize(forward)
예제 #2
0
def FeatureExtracter(lang, attrs=[LOWER, SHAPE, PREFIX, SUFFIX], tokenized=True):
    nlp = get_spacy(lang, parser=False, tagger=False, entity=False)
    nlp.vocab.lex_attr_getters[PREFIX] = lambda string: string[:3]
    nlp.vocab.lex_attr_getters[SUFFIX] = lambda string: string[-3:]

    def forward(texts, drop=0.0):
        if tokenized:
            docs = [Doc(nlp.vocab, words) for words in texts]
        else:
            docs = [nlp(text) for text in texts]
        features = [doc.to_array(attrs) for doc in docs]

        def backward(d_features, sgd=None):
            return d_features

        return features, backward

    return layerize(forward)
def main(dataset='quora',
         width=50,
         depth=2,
         min_batch_size=1,
         max_batch_size=512,
         dropout=0.2,
         dropout_decay=0.0,
         pooling="mean+max",
         nb_epoch=5,
         pieces=3,
         L2=0.0,
         use_gpu=False,
         out_loc=None,
         quiet=False,
         job_id=None,
         ws_api_url=None,
         rest_api_url=None):
    global CTX
    if job_id is not None:
        CTX = neptune.Context()
        width = CTX.params.width
        L2 = CTX.params.L2
        nb_epoch = CTX.params.nb_epoch
        depth = CTX.params.depth
        max_batch_size = CTX.params.max_batch_size
    cfg = dict(locals())

    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == 'mean+max':
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy('en')

    if use_gpu:
        Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    Model.lsuv = True
    #Model.ops = CupyOps()
    with Model.define_operators({
            '>>': chain,
            '**': clone,
            '|': concatenate,
            '+': add
    }):
        mwe_encode = ExtractWindow(nW=1) >> BN(
            Maxout(width, drop_factor=0.0, pieces=pieces))

        sent2vec = (  # List[spacy.token.Doc]{B}
            flatten_add_lengths  # : (ids{T}, lengths{B})
            >> with_getitem(
                0,
                #(StaticVectors('en', width)
                HashEmbed(width, 3000)
                #+ HashEmbed(width, 3000))
                #>> Residual(mwe_encode ** 2)
            )  # : word_ids{T}
            >> Pooling(mean_pool, max_pool)
            #>> Residual(BN(Maxout(width*2, pieces=pieces), nO=width*2)**2)
            >> Maxout(width * 2, pieces=pieces, drop_factor=0.0) >> logistic)
        model = Siamese(sent2vec, CauchySimilarity(width * 2))

    print("Read and parse data: %s" % dataset)
    if dataset == 'quora':
        train, dev = datasets.quora_questions()
    elif dataset == 'snli':
        train, dev = datasets.snli()
    elif dataset == 'stackxc':
        train, dev = datasets.stack_exchange()
    elif dataset in ('quora+snli', 'snli+quora'):
        train, dev = datasets.quora_questions()
        train2, dev2 = datasets.snli()
        train.extend(train2)
        dev.extend(dev2)
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    get_ids = get_word_ids(Model.ops)
    train_X, train_y = preprocess(model.ops, nlp, train, get_ids)
    dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids)

    with model.begin_training(train_X[:10000], train_y[:10000],
                              **cfg) as (trainer, optimizer):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate_logloss(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        n_iter = 0

        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            assert yh.shape == y.shape, (yh.shape, y.shape)

            assert (yh >= 0.).all(), yh
            train_acc = ((yh >= 0.5) == (y >= 0.5)).sum()
            loss = model.ops.xp.abs(yh - y).mean()
            epoch_train_acc += train_acc
            backprop(yh - y, optimizer)
            n_iter += 1

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print('Saving to', out_loc)
            with out_loc.open('wb') as file_:
                pickle.dump(model, file_, -1)
예제 #4
0
def main(dataset='quora',
         width=128,
         depth=2,
         min_batch_size=128,
         max_batch_size=128,
         dropout=0.2,
         dropout_decay=0.0,
         pooling="mean+max",
         nb_epoch=20,
         pieces=3,
         use_gpu=False,
         out_loc=None,
         quiet=False):
    cfg = dict(locals())
    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == 'mean+max':
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy('en')

    if use_gpu:
        Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    with Model.define_operators({
            '>>': chain,
            '**': clone,
            '|': concatenate,
            '*': multiply
    }):
        # Important trick: text isn't like images, and the best way to use
        # convolution is different. Don't use pooling-over-time. Instead,
        # use the window to compute one vector per word, and do this N deep.
        # In the first layer, we adjust each word vector based on the two
        # surrounding words --- this gives us essentially trigram vectors.
        # In the next layer, we have a trigram of trigrams --- so we're
        # conditioning on information from a five word slice. The third layer
        # gives us 7 words. This is like the BiLSTM insight: we're not trying
        # to learn a vector for the whole sentence in this step. We're just
        # trying to learn better, position-sensitive word features. This simple
        # convolution step is much more efficient than BiLSTM, and can be
        # computed in parallel for every token in the batch.
        mwe_encode = ExtractWindow(nW=1) >> Maxout(
            width, width * 3, pieces=pieces)
        # Comments indicate the output type and shape at each step of the pipeline.
        # * B: Number of sentences in the batch
        # * T: Total number of words in the batch
        # (i.e. sum(len(sent) for sent in batch))
        # * W: Width of the network (input hyper-parameter)
        # * ids: ID for each word (integers).
        # * lengths: Number of words in each sentence in the batch (integers)
        # * floats: Standard dense vector.
        # (Dimensions annotated in curly braces.)
        sent2vec = (  # List[spacy.token.Doc]{B}
            get_word_ids >> flatten_add_lengths  # : (ids{T}, lengths{B})
            >> with_getitem(
                0,  # : word_ids{T}
                (TokenWeights(Model.ops, nlp) * SpacyVectors('en', width) >>
                 mwe_encode**depth))  # : (floats{T, W}, lengths{B})
            # Useful trick: Why choose between max pool and mean pool?
            # We may as well have both representations.
            >> pool_layer  # : floats{B, 2*W}
        )
        model = (
            diff(sent2vec)  # : floats{B, 8*W}
            >> Maxout(width, pieces=pieces)  # : floats{B, W}
            >> Softmax()  # : floats{B, 2}
        )

    print("Read and parse data: %s" % dataset)
    if dataset == 'quora':
        train, dev = datasets.quora_questions()
    elif dataset == 'snli':
        train, dev = datasets.snli()
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    train_X, train_y = preprocess(model.ops, nlp, train)
    dev_X, dev_y = preprocess(model.ops, nlp, dev)
    assert len(dev_y.shape) == 2
    print("Initialize with data (LSUV)")
    with model.begin_training(train_X[:5000], train_y[:5000],
                              **cfg) as (trainer, optimizer):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            # No auto-diff: Just get a callback and pass the data through.
            # Hardly a hardship, and it means we don't have to create/maintain
            # a computational graph. We just use closures.
            backprop(yh - y, optimizer)

            epoch_train_acc += (yh.argmax(axis=1) == y.argmax(axis=1)).sum()

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print('Saving to', out_loc)
            with out_loc.open('wb') as file_:
                pickle.dump(model, file_, -1)
예제 #5
0
def main(
    dataset="quora",
    width=64,
    depth=2,
    min_batch_size=1,
    max_batch_size=128,
    dropout=0.0,
    dropout_decay=0.0,
    pooling="mean+max",
    nb_epoch=20,
    pieces=3,
    use_gpu=False,
    out_loc=None,
    quiet=False,
):
    cfg = dict(locals())
    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == "mean+max":
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy("en")

    # if use_gpu:
    #    Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    with Model.define_operators({">>": chain, "**": clone, "|": concatenate, "+": add}):
        mwe_encode = ExtractWindow(nW=1) >> Maxout(width, width * 3, pieces=pieces)

        embed = StaticVectors("en", width)  # + Embed(width, width*2, 5000)
        # Comments indicate the output type and shape at each step of the pipeline.
        # * B: Number of sentences in the batch
        # * T: Total number of words in the batch
        # (i.e. sum(len(sent) for sent in batch))
        # * W: Width of the network (input hyper-parameter)
        # * ids: ID for each word (integers).
        # * lengths: Number of words in each sentence in the batch (integers)
        # * floats: Standard dense vector.
        # (Dimensions annotated in curly braces.)
        sent2vec = (  # List[spacy.token.Doc]{B}
            flatten_add_lengths  # : (ids{T}, lengths{B})
            >> with_getitem(
                0, embed >> mwe_encode ** depth  # : word_ids{T}
            )  # : (floats{T, W}, lengths{B})
            >> pool_layer
            >> Maxout(width, pieces=pieces)
            >> Maxout(width, pieces=pieces)
        )
        model = (
            ((Arg(0) >> sent2vec) | (Arg(1) >> sent2vec))
            >> Maxout(width, pieces=pieces)
            >> Maxout(width, pieces=pieces)
            >> Softmax(2)
        )

    print("Read and parse data: %s" % dataset)
    if dataset == "quora":
        train, dev = datasets.quora_questions()
    elif dataset == "snli":
        train, dev = datasets.snli()
    elif dataset == "stackxc":
        train, dev = datasets.stack_exchange()
    elif dataset in ("quora+snli", "snli+quora"):
        train, dev = datasets.quora_questions()
        train2, dev2 = datasets.snli()
        train.extend(train2)
        dev.extend(dev2)
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    get_ids = get_word_ids(Model.ops)
    train_X, train_y = preprocess(model.ops, nlp, train, get_ids)
    dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids)

    print("Initialize with data (LSUV)")
    print(dev_y.shape)
    with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (
        trainer,
        optimizer,
    ):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            assert yh.shape == y.shape, (yh.shape, y.shape)
            # No auto-diff: Just get a callback and pass the data through.
            # Hardly a hardship, and it means we don't have to create/maintain
            # a computational graph. We just use closures.

            assert (yh >= 0.0).all()
            train_acc = (yh.argmax(axis=1) == y.argmax(axis=1)).sum()
            epoch_train_acc += train_acc

            backprop(yh - y, optimizer)

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print("Saving to", out_loc)
            with out_loc.open("wb") as file_:
                pickle.dump(model, file_, -1)
예제 #6
0
def main(
    dataset="quora",
    width=200,
    depth=2,
    min_batch_size=1,
    max_batch_size=512,
    dropout=0.2,
    dropout_decay=0.0,
    pooling="mean+max",
    nb_epoch=5,
    pieces=3,
    L2=0.0,
    use_gpu=False,
    out_loc=None,
    quiet=False,
    job_id=None,
    ws_api_url=None,
    rest_api_url=None,
):
    cfg = dict(locals())

    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == "mean+max":
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy("en")

    if use_gpu:
        Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    Model.lsuv = True
    # Model.ops = CupyOps()
    with Model.define_operators({">>": chain, "**": clone, "|": concatenate, "+": add}):
        mwe_encode = ExtractWindow(nW=1) >> LN(
            Maxout(width, drop_factor=0.0, pieces=pieces)
        )

        sent2vec = (
            flatten_add_lengths
            >> with_getitem(
                0,
                (HashEmbed(width, 3000) | StaticVectors("en", width))
                >> LN(Maxout(width, width * 2))
                >> Residual(mwe_encode) ** depth,
            )  # : word_ids{T}
            >> Pooling(mean_pool, max_pool)
            >> Residual(LN(Maxout(width * 2, pieces=pieces), nO=width * 2)) ** 2
            >> logistic
        )
        model = Siamese(sent2vec, CauchySimilarity(width * 2))

    print("Read and parse data: %s" % dataset)
    if dataset == "quora":
        train, dev = datasets.quora_questions()
    elif dataset == "snli":
        train, dev = datasets.snli()
    elif dataset == "stackxc":
        train, dev = datasets.stack_exchange()
    elif dataset in ("quora+snli", "snli+quora"):
        train, dev = datasets.quora_questions()
        train2, dev2 = datasets.snli()
        train.extend(train2)
        dev.extend(dev2)
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    get_ids = get_word_ids(Model.ops)
    train_X, train_y = preprocess(model.ops, nlp, train, get_ids)
    dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids)

    with model.begin_training(train_X[:10000], train_y[:10000], **cfg) as (
        trainer,
        optimizer,
    ):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate_logloss(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        n_iter = 0

        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            assert yh.shape == y.shape, (yh.shape, y.shape)

            assert (yh >= 0.0).all(), yh
            train_acc = ((yh >= 0.5) == (y >= 0.5)).sum()
            loss = model.ops.xp.abs(yh - y).mean()
            epoch_train_acc += train_acc
            backprop(yh - y, optimizer)
            n_iter += 1

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print("Saving to", out_loc)
            with out_loc.open("wb") as file_:
                pickle.dump(model, file_, -1)
예제 #7
0
def main(dataset='quora',
         width=64,
         depth=1,
         min_batch_size=128,
         max_batch_size=128,
         dropout=0.0,
         dropout_decay=0.0,
         pooling="mean+max",
         nb_epoch=20,
         pieces=2,
         use_gpu=False,
         out_loc=None,
         quiet=False):
    cfg = dict(locals())
    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == 'mean+max':
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)

    print("Load spaCy")
    nlp = get_spacy('en')

    if use_gpu:
        Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    with Model.define_operators({
            '>>': chain,
            '**': clone,
            '|': concatenate,
            '+': add
    }):
        mwe_encode = ExtractWindow(nW=1) >> Maxout(
            width, width * 3, pieces=pieces)

        embed = StaticVectors('en', width)  #+ Embed(width, width, 5000)
        sent2mat = (get_word_ids(Model.ops) >>
                    with_flatten(embed >> mwe_encode**depth))
        model = Siamese(sent2mat, WordMoversSimilarity(Model.ops))

    print("Read and parse data: %s" % dataset)
    if dataset == 'quora':
        train, dev = datasets.quora_questions()
    elif dataset == 'snli':
        train, dev = datasets.snli()
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    train_X, train_y = preprocess(model.ops, nlp, train)
    dev_X, dev_y = preprocess(model.ops, nlp, dev)
    print("Initialize with data (LSUV)")
    with model.begin_training(train_X[:5000], train_y[:5000],
                              **cfg) as (trainer, optimizer):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            # No auto-diff: Just get a callback and pass the data through.
            # Hardly a hardship, and it means we don't have to create/maintain
            # a computational graph. We just use closures.

            train_acc = ((yh >= 0.5) == (y >= 0.5)).sum()
            epoch_train_acc += train_acc

            backprop(yh - y, optimizer)

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print('Saving to', out_loc)
            with out_loc.open('wb') as file_:
                pickle.dump(model, file_, -1)
def main(dataset='quora', width=64, depth=2, min_batch_size=1,
        max_batch_size=128, dropout=0.0, dropout_decay=0.0, pooling="mean+max",
        nb_epoch=20, pieces=3, use_gpu=False, out_loc=None, quiet=False):
    cfg = dict(locals())
    if out_loc:
        out_loc = Path(out_loc)
        if not out_loc.parent.exists():
            raise IOError("Can't open output location: %s" % out_loc)
    print(cfg)
    if pooling == 'mean+max':
        pool_layer = Pooling(mean_pool, max_pool)
    elif pooling == "mean":
        pool_layer = mean_pool
    elif pooling == "max":
        pool_layer = max_pool
    else:
        raise ValueError("Unrecognised pooling", pooling)


    print("Load spaCy")
    nlp = get_spacy('en')

    #if use_gpu:
    #    Model.ops = CupyOps()

    print("Construct model")
    # Bind operators for the scope of the block:
    # * chain (>>): Compose models in a 'feed forward' style,
    # i.e. chain(f, g)(x) -> g(f(x))
    # * clone (**): Create n copies of a model, and chain them, i.e.
    # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights.
    # * concatenate (|): Merge the outputs of two models into a single vector,
    # i.e. (f|g)(x) -> hstack(f(x), g(x))
    with Model.define_operators({'>>': chain, '**': clone, '|': concatenate,
                                 '+': add}):
        mwe_encode = ExtractWindow(nW=1) >> Maxout(width, width*3, pieces=pieces)

        embed = StaticVectors('en', width)# + Embed(width, width*2, 5000)
        # Comments indicate the output type and shape at each step of the pipeline.
        # * B: Number of sentences in the batch
        # * T: Total number of words in the batch
        # (i.e. sum(len(sent) for sent in batch))
        # * W: Width of the network (input hyper-parameter)
        # * ids: ID for each word (integers).
        # * lengths: Number of words in each sentence in the batch (integers)
        # * floats: Standard dense vector.
        # (Dimensions annotated in curly braces.)
        sent2vec = ( # List[spacy.token.Doc]{B}
            flatten_add_lengths  # : (ids{T}, lengths{B})
            >> with_getitem(0,      # : word_ids{T}
                 embed
                 >> mwe_encode ** depth
            ) # : (floats{T, W}, lengths{B})
            >> pool_layer
            >> Maxout(width, pieces=pieces)
            >> Maxout(width, pieces=pieces)
        )
        model = (
            ((Arg(0) >> sent2vec) | (Arg(1) >> sent2vec))
            >> Maxout(width, pieces=pieces)
            >> Maxout(width, pieces=pieces)
            >> Softmax(2)
        )

    print("Read and parse data: %s" % dataset)
    if dataset == 'quora':
        train, dev = datasets.quora_questions()
    elif dataset == 'snli':
        train, dev = datasets.snli()
    elif dataset == 'stackxc':
        train, dev = datasets.stack_exchange()
    elif dataset in ('quora+snli', 'snli+quora'):
        train, dev = datasets.quora_questions()
        train2, dev2 = datasets.snli()
        train.extend(train2)
        dev.extend(dev2)
    else:
        raise ValueError("Unknown dataset: %s" % dataset)
    get_ids = get_word_ids(Model.ops)
    train_X, train_y = preprocess(model.ops, nlp, train, get_ids)
    dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids)

    print("Initialize with data (LSUV)")
    print(dev_y.shape)
    with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (trainer, optimizer):
        # Pass a callback to print progress. Give it all the local scope,
        # because why not?
        trainer.each_epoch.append(track_progress(**locals()))
        trainer.batch_size = min_batch_size
        batch_size = float(min_batch_size)
        print("Accuracy before training", model.evaluate(dev_X, dev_y))
        print("Train")
        global epoch_train_acc
        for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet):
            # Slightly useful trick: Decay the dropout as training proceeds.
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            assert yh.shape == y.shape, (yh.shape, y.shape)
            # No auto-diff: Just get a callback and pass the data through.
            # Hardly a hardship, and it means we don't have to create/maintain
            # a computational graph. We just use closures.

            assert (yh >= 0.).all()
            train_acc = (yh.argmax(axis=1) == y.argmax(axis=1)).sum()
            epoch_train_acc += train_acc

            backprop(yh-y, optimizer)

            # Slightly useful trick: start with low batch size, accelerate.
            trainer.batch_size = min(int(batch_size), max_batch_size)
            batch_size *= 1.001
        if out_loc:
            out_loc = Path(out_loc)
            print('Saving to', out_loc)
            with out_loc.open('wb') as file_:
                pickle.dump(model, file_, -1)