import functools import itertools import multiprocessing import random import numpy as np import tensorflow as tf from absl import flags from libml import utils, ctaugment from libml.utils import EasyDict from third_party.auto_augment import augmentations, policies FLAGS = flags.FLAGS POOL = None POLICIES = EasyDict(cifar10=policies.cifar10_policies(), cifar100=policies.cifar10_policies(), svhn=policies.svhn_policies(), svhn_noextra=policies.svhn_policies()) RANDOM_POLICY_OPS = ( 'Identity', 'AutoContrast', 'Equalize', 'Rotate', 'Solarize', 'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'TranslateX', 'TranslateY', 'Posterize', 'ShearY' ) AUGMENT_ENUM = 'd x m aa aac ra rac'.split() + ['r%d_%d_%d' % (nops, mag, cutout) for nops, mag, cutout in itertools.product(range(1, 5), range(1, 16), range(0, 100, 25))] + [ 'rac%d' % (mag) for mag in range(1, 10)] flags.DEFINE_integer('K', 1, 'Number of strong augmentation for unlabeled data.')
import functools import itertools import multiprocessing import random import numpy as np import tensorflow as tf from absl import flags from libml import utils, ctaugment from libml.utils import EasyDict from third_party.auto_augment import augmentations, policies FLAGS = flags.FLAGS POOL = None POLICIES = EasyDict(fixmatch_train=policies.cifar10_policies()) RANDOM_POLICY_OPS = ( 'Identity', 'AutoContrast', 'Equalize', 'Rotate', 'Solarize', 'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'TranslateX', 'TranslateY', 'Posterize', 'ShearY' ) AUGMENT_ENUM = 'd x m aa aac ra rac'.split() + ['r%d_%d_%d' % (nops, mag, cutout) for nops, mag, cutout in itertools.product(range(1, 5), range(1, 16), range(0, 100, 25))] + [ 'rac%d' % (mag) for mag in range(1, 10)] flags.DEFINE_integer('K', 1, 'Number of strong augmentation for unlabeled data.') flags.DEFINE_enum('augment', 'd.d', [x + '.' + y for x, y in itertools.product(AUGMENT_ENUM, AUGMENT_ENUM)] + [x + '.' + y + '.' + z for x, y, z in itertools.product(AUGMENT_ENUM, AUGMENT_ENUM, AUGMENT_ENUM)] + [
import itertools import multiprocessing import random import numpy as np import tensorflow as tf from absl import flags from libml import utils, ctaugment from libml.utils import EasyDict from third_party.auto_augment import augmentations, policies FLAGS = flags.FLAGS POOL = None POLICIES = EasyDict( cifar10=policies.cifar10_policies(), cifar10p=policies.cifar10_policies(), # color=policies.color_policies(), cifar10imb=policies.cifar10_policies(), cifar100=policies.cifar10_policies(), svhn=policies.svhn_policies(), svhnp=policies.svhn_policies(), svhnp_noextra=policies.svhn_policies(), svhn_noextra=policies.svhn_policies()) RANDOM_POLICY_OPS = ('Identity', 'AutoContrast', 'Equalize', 'Rotate', 'Solarize', 'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'TranslateX', 'TranslateY', 'Posterize', 'ShearY') AUGMENT_ENUM = 'd x m aa aac aacc ra rac'.split() + [ 'r%d_%d_%d' % (nops, mag, cutout)