def __init__(self, file_object, decryptor): self.actual_file_object = file_object self.decryptor = decryptor self.lock = RLock()
ret = [] if not lst: return ret tmp = lst if isinstance(lst, list) else [lst] [ret.append(x) for x in tmp if x not in ret] return ret def md5_transform(raw_str): h1 = hashlib.md5() h1.update(raw_str.encode(encoding='utf-8')) return h1.hexdigest() g_unique_id = int(time.time() % 10000) g_unique_lock = RLock() def get_unique_id32(): global g_unique_id with g_unique_lock: g_unique_id += 1 if g_unique_id >= 4294967295: g_unique_id = int(time.time() % 10000) ret_id = g_unique_id return ret_id class ProtobufMap(dict): created_protobuf_map = {}
class LALHandler(object): """Manages the Labels and Metadata""" lock = RLock() sample_by_user_reservation: Dict[str, ReservedSample] = dict() logger = logging.getLogger(__name__) def __init__(self, classifier, label_col_name, meta_df, labels_df, do_users_share_labels=True): """ :type classifier: C """ self.classifier = classifier self.batch_size = PRELABELING_BATCH_SIZE if classifier.use_prelabeling else DEFAULT_BATCH_SIZE self.lbl_col = label_col_name self.lbl_id_col = label_col_name + "_id" self._skipped = {} self.meta_df = meta_df.set_index(self.lbl_id_col, drop=False) self.labels_df = labels_df self.do_users_share_labels = do_users_share_labels self.last_used_label_id = self.meta_df[self.lbl_id_col].max() if len( self.meta_df) else 0 def get_meta_by_status(self, user, status=None): if self.do_users_share_labels: return self.meta_df if status is None else self.meta_df[ self.meta_df.status == status] else: if status is None: return self.meta_df[self.meta_df.annotator == user] return self.meta_df[(self.meta_df.status == status) & (self.meta_df.annotator == user)] def get_remaining(self, user): labeled_ids = set(self.get_meta_by_status(user).data_id.values) unlabeled_ids = [ item_id for item_id in self.classifier.get_all_item_ids_list() if item_id not in labeled_ids ] result = [] with LALHandler.lock: for i in unlabeled_ids: if i in self.sample_by_user_reservation: reserved_sample = self.sample_by_user_reservation.get(i) if reserved_sample.reserved_until <= datetime.now(): del self.sample_by_user_reservation[i] result.append(i) elif reserved_sample.username == user: result.append(i) else: result.append(i) return result @staticmethod def replace_empty_keys(label): """ Replaces an empty label when its saved/loaded When loaded an empty key is represented by EMPTY_KEY, when saved it becomes None """ clean_label = cp.deepcopy(label) for i, lab in enumerate(clean_label): if isinstance(lab, str): if not lab: clean_label[i] = EMPTY_KEY elif lab == EMPTY_KEY: clean_label[i] = None else: if not lab['label']: lab['label'] = EMPTY_KEY elif lab['label'] == EMPTY_KEY: lab['label'] = None return clean_label def calculate_stats(self, user): total_count = len(self.classifier.get_all_item_ids_list()) labeled_samples = self.get_meta_by_status(user, META_STATUS_LABELED) skipped_samples = self.get_meta_by_status(user, META_STATUS_SKIPPED) stats = { "labeled": len(labeled_samples), "total": total_count, "skipped": len(skipped_samples), "perLabel": self.classifier.format_labels_for_stats(labeled_samples[ self.lbl_col]).astype('str').value_counts().to_dict() } return stats def get_config(self): result = {"al_enabled": self.classifier.is_al_enabled} if self.classifier.is_al_enabled: result["halting_thr"] = sorted([ self.classifier.halting_thr_low, self.classifier.halting_thr_high ]) result['local_categories'] = get_local_categories() result['classifier_config'] = self.classifier.get_relevant_config( ) or {} return result def label(self, data, user): self.logger.info("Labeling: %s" % json.dumps(data)) if 'id' not in data: message = "Labeling data doesn't contain sample ID" self.logger.error(message) raise ValueError(message) data_id = data.get('id') user_meta = self.user_meta(user) existing_meta_record = user_meta[user_meta.data_id == data_id] lbl_id = self.create_label_id( ) if existing_meta_record.empty else existing_meta_record.iloc[0][ self.lbl_id_col] raw_data = self.classifier.get_raw_item_by_id(data_id, is_saving=True) if not data.get('label'): serialized_label = None else: serialized_label = self.classifier.serialize_label( self.replace_empty_keys(data.get('label'))) label = { **raw_data, **{ self.lbl_col: serialized_label, self.lbl_id_col: lbl_id } } meta = { self.lbl_col: serialized_label, self.lbl_id_col: lbl_id, 'date': datetime.now(), 'data_id': data_id, 'status': META_STATUS_LABELED, 'comment': data.get('comment'), 'session': self.classifier.get_session(), 'annotator': user, } self.meta_df = self.meta_df[self.meta_df[self.lbl_id_col] != lbl_id] self.meta_df = self.meta_df.append(meta, ignore_index=True) self.labels_df = self.labels_df[ self.labels_df[self.lbl_id_col] != lbl_id] self.labels_df = self.labels_df.append(label, ignore_index=True) self.save_item_label(self.labels_df, label) self.save_item_meta(self.meta_df, meta) return {"label_id": int(lbl_id), "stats": self.calculate_stats(user)} def add_prelabels(self, batch, user): self.logger.info("Retrieving prelabels") labeled_user_meta = self.get_meta_by_status( user, status=META_STATUS_LABELED).to_dict(orient='records') self.classifier.add_prelabels(batch, labeled_user_meta) def create_label_id(self): self.last_used_label_id += 1 return self.last_used_label_id def is_stopping_criteria_met(self, user): return len(self.get_remaining(user)) < 0 def get_batch(self, user): self.logger.info("Getting unlabeled batch") stats = self.calculate_stats(user) self.logger.info("Stats: {0}".format(stats)) if self.is_stopping_criteria_met(user): return { "isDone": True, "stats": stats, "config": self.get_config() } remaining = self.get_remaining(user) ids_batch = remaining[-self.batch_size:] with LALHandler.lock: reserved_until = datetime.now() + timedelta( minutes=int(self.batch_size * BLOCK_SAMPLE_BY_USER_FOR_MINUTES)) for i in ids_batch: self.sample_by_user_reservation[i] = ReservedSample( user, reserved_until) ids_batch.reverse() batch = [{ "id": data_id, "data": self.classifier.get_item_by_id(data_id) } for data_id in ids_batch] if self.classifier.use_prelabeling: self.add_prelabels(batch, user) return { "isMultiLabel": self.classifier.is_multi_label, "type": self.classifier.type, "items": batch, "isLastBatch": len(remaining) < self.batch_size, "stats": stats, "config": self.get_config() } def user_meta(self, user): return self.meta_df[self.meta_df.annotator == user] def first(self, user): return self.create_annotation_response( self.user_meta(user).sort_values(self.lbl_id_col).iloc[0], is_first=True, is_last=len(self.user_meta(user)) == 1, annnotation_index=0) def next(self, label_id, user): if not label_id: raise ValueError("Empty annotation id") self.logger.info(f"Going forward from label id: {label_id}") meta = self.user_meta(user).sort_values( self.lbl_id_col).reset_index(drop=True) next_els = meta[meta[self.lbl_id_col] > label_id].sort_values( self.lbl_id_col) nxt = next_els.iloc[0] annnotation_index = int( meta[meta[self.lbl_id_col] == nxt[self.lbl_id_col]].index[0]) return self.create_annotation_response( nxt, is_first=False, is_last=len(next_els) == 1, annnotation_index=annnotation_index) def previous(self, label_id, user): is_last = False self.logger.info(f"Going back from label id: {label_id}") user_meta = self.user_meta(user).sort_values( self.lbl_id_col).reset_index(drop=True) if label_id: previous = user_meta[user_meta[self.lbl_id_col] < label_id] is_first = len(previous) == 1 if not len(previous): raise ValueError("Reached the first labeled annotation") previous = previous.iloc[len(previous) - 1] else: is_last = True is_first = len(user_meta) == 1 previous = user_meta.iloc[len(user_meta) - 1] annnotation_index = int(user_meta[user_meta[self.lbl_id_col] == previous[self.lbl_id_col]].index[0]) return self.create_annotation_response( previous, is_first=is_first, is_last=is_last, annnotation_index=annnotation_index) def create_annotation_response(self, annotation, is_first, is_last, annnotation_index): annotation = annotation.where((pd.notnull(annotation)), None).astype('object').to_dict() data_id = annotation['data_id'] if annotation[self.lbl_col] is not None and annotation[ 'status'] != META_STATUS_SKIPPED: label = self.replace_empty_keys( self.classifier.deserialize_label(annotation[self.lbl_col])) else: label = None return { "annotation": { "label": label, "comment": annotation['comment'] }, "isFirst": is_first, "isLast": is_last, "item": { "id": data_id, "status": annotation['status'], "labelId": int(annotation[self.lbl_id_col]), "labelIndex": annnotation_index + 1, "data": self.classifier.get_item_by_id(data_id) } } def skip(self, data, user): data_id = data.get('dataId') label_id = data.get('labelId') lbl_id = data.get('labelId', self.create_label_id()) meta = { 'date': datetime.now(), 'data_id': data_id, 'status': META_STATUS_SKIPPED, self.lbl_col: None, self.lbl_id_col: lbl_id, 'comment': data.get('comment'), 'session': self.classifier.get_session(), 'annotator': user, } self.meta_df = self.meta_df[self.meta_df[self.lbl_id_col] != lbl_id] self.meta_df = self.meta_df.append(meta, ignore_index=True) if label_id: self.labels_df = self.labels_df[ self.labels_df[self.lbl_id_col] != lbl_id] self.save_item_meta(self.meta_df, meta) self.save_item_label(self.labels_df) return {"label_id": int(lbl_id), "stats": self.calculate_stats(user)} @abstractmethod def save_item_label(self, new_label_df, new_label=None): pass @abstractmethod def save_item_meta(self, new_meta_df, new_meta=None): pass
def __init__(self, master: Optional[tk.Tk] = None, server_address: Optional[str] = None, client_ip: Optional[str] = None, client_port: Optional[int] = None, player_id: Optional[str] = None, nick: Optional[str] = None, dark_mode: bool = False) -> None: if master is None: master = tk.Tk() master.minsize(width=400, height=300) master.title('Jeopardy!') super().__init__(master) master.protocol('WM_DELETE_WINDOW', self.close) self.player_id = player_id or str(uuid.uuid4()) self.nick = nick or self.player_id self.server_address = server_address self.client_ip = client_ip self.client_port = client_port or random.randrange(65000, 65536) self.client = JeopardyClient(self.server_address, self.player_id) self.players = {} self.stats = GameInfo() self.current_question_id = None self.question_timeout = None self.lock = RLock() self.app_process = None self.event_queue = Queue(maxsize=100) self.stats_queue = Queue(maxsize=100) self.question_queue = Queue(maxsize=1) # enable resizing top = self.winfo_toplevel() top.rowconfigure(0, weight=1) top.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.dark_mode = dark_mode if self.dark_mode: self.default_background = self.DARK_GRAY self.default_foreground = 'white' else: self.default_background = 'white' self.default_foreground = 'black' self.stats_pane = None self.event_pane = None self.status_canvas = None self.status_indicator = None self.grid(sticky=tk.N + tk.S + tk.E + tk.W) self.configure_style() self.default_font = font.Font(self, family=self.FONT_FAMILY, size=14) self.bold_font = font.Font(self, family=self.FONT_FAMILY, size=14, weight='bold') self.italic_font = font.Font(self, family=self.FONT_FAMILY, size=14, slant='italic') self.main_pane = self.create_main_pane() self.configure_tags() self.input_text = tk.StringVar(value='') self.input_pane = self.create_input_pane()
def __init__(self): mpv_config = conffile.get(APP_NAME, "mpv.conf", True) input_config = conffile.get(APP_NAME, "input.conf", True) self._video = None extra_options = {} self.timeline_trigger = None self.action_trigger = None self.external_subtitles = {} self.external_subtitles_rev = {} self.should_send_timeline = False self.start_time = None self.url = None self.evt_queue = Queue() self._lock = RLock() self._tl_lock = RLock() self.last_update = Timer() self._jf_settings = None self.get_webview = lambda: None if is_using_ext_mpv: extra_options = { "start_mpv": settings.mpv_ext_start, "ipc_socket": settings.mpv_ext_ipc, "mpv_location": settings.mpv_ext_path, "player-operation-mode": "cplayer" } self._player = mpv.MPV(input_default_bindings=True, input_vo_keyboard=True, input_media_keys=True, include=mpv_config, input_conf=input_config, log_handler=mpv_log_handler, loglevel=settings.mpv_log_level, **extra_options) self.menu = OSDMenu(self) if hasattr(self._player, 'osc'): self._player.osc = settings.enable_osc else: log.warning( "This mpv version doesn't support on-screen controller.") # Wrapper for on_key_press that ignores None. def keypress(key): def wrapper(func): if key is not None: self._player.on_key_press(key)(func) return func return wrapper @self._player.on_key_press('CLOSE_WIN') @self._player.on_key_press('STOP') @keypress(settings.kb_stop) def handle_stop(): self.stop() @keypress(settings.kb_prev) def handle_prev(): self.put_task(self.play_prev) @keypress(settings.kb_next) def handle_next(): self.put_task(self.play_next) @self._player.on_key_press('PREV') @self._player.on_key_press('XF86_PREV') def handle_media_prev(): if settings.media_key_seek: seektime, _ = self.get_seek_times() self._player.command("seek", seektime) else: self.put_task(self.play_prev) @self._player.on_key_press('NEXT') @self._player.on_key_press('XF86_NEXT') def handle_media_next(): if settings.media_key_seek: _, seektime = self.get_seek_times() self._player.command("seek", seektime) else: self.put_task(self.play_next) @keypress(settings.kb_watched) def handle_watched(): self.put_task(self.watched_skip) @keypress(settings.kb_unwatched) def handle_unwatched(): self.put_task(self.unwatched_quit) @keypress(settings.kb_menu) def menu_open(): if not self.menu.is_menu_shown: self.menu.show_menu() else: self.menu.hide_menu() @keypress(settings.kb_menu_esc) def menu_back(): if self.menu.is_menu_shown: self.menu.menu_action('back') else: self._player.command('set', 'fullscreen', 'no') @keypress(settings.kb_menu_ok) def menu_ok(): self.menu.menu_action('ok') @keypress(settings.kb_menu_left) def menu_left(): if self.menu.is_menu_shown: self.menu.menu_action('left') else: seektime = settings.seek_left if settings.use_web_seek: seektime, _ = self.get_seek_times() self._player.command("seek", seektime) @keypress(settings.kb_menu_right) def menu_right(): if self.menu.is_menu_shown: self.menu.menu_action('right') else: seektime = settings.seek_right if settings.use_web_seek: _, seektime = self.get_seek_times() self._player.command("seek", seektime) @keypress(settings.kb_menu_up) def menu_up(): if self.menu.is_menu_shown: self.menu.menu_action('up') else: self._player.command("seek", settings.seek_up) @keypress(settings.kb_menu_down) def menu_down(): if self.menu.is_menu_shown: self.menu.menu_action('down') else: self._player.command("seek", settings.seek_down) @keypress(settings.kb_pause) def handle_pause(): if self.menu.is_menu_shown: self.menu.menu_action('ok') else: self.toggle_pause() # This gives you an interactive python debugger prompt. @keypress(settings.kb_debug) def handle_debug(): import pdb pdb.set_trace() # Fires between episodes. @self._player.property_observer('eof-reached') def handle_end(_name, reached_end): if self._video and reached_end: self.put_task(self.finished_callback) # Fires at the end. @self._player.event_callback('idle') def handle_end_idle(event): if self._video: self.put_task(self.finished_callback)
class TimeoutScheduler: """A timeout scheduler which uses a single thread for all timeouts, unlike python's own Timer objects which use a thread each.""" GRACE = .1 _mutex = RLock() _event = Event() _thread = None # type: Optional[Thread] # use heapq functions on _handles! _handles = [] # type: List[TimeoutScheduler.Handle] @classmethod def schedule(cls, timeout, callback): # type: (float, Callable[[], None]) -> TimeoutScheduler.Handle """Schedules the execution of a timeout. The function `callback` will be called in `timeout` seconds. Returns a handle that can be used to remove the timeout.""" when = cls._time() + timeout handle = cls.Handle(when, callback) with cls._mutex: # Add the handler to the heap, keeping the invariant # Time complexity is O(log n) heapq.heappush(cls._handles, handle) must_interrupt = cls._handles[0] == handle # Start the scheduling thread if it is not started already if cls._thread is None: t = Thread(target=cls._task, name="TimeoutScheduler._task") must_interrupt = False cls._thread = t cls._event.clear() t.start() if must_interrupt: # if the new timeout got in front of the one we are currently # waiting on, the current wait operation must be aborted and # updated with the new timeout cls._event.set() time.sleep(0) # call "yield" # Return the handle to the timeout so that the user can cancel it return handle @classmethod def cancel(cls, handle): # type: (TimeoutScheduler.Handle) -> None """Provided its handle, cancels the execution of a timeout.""" with cls._mutex: if handle in cls._handles: # Time complexity is O(n) handle._cb = None cls._handles.remove(handle) heapq.heapify(cls._handles) if len(cls._handles) == 0: # set the event to stop the wait - this kills the thread cls._event.set() else: raise Scapy_Exception("Handle not found") @classmethod def clear(cls): # type: () -> None """Cancels the execution of all timeouts.""" with cls._mutex: cls._handles = [] # set the event to stop the wait - this kills the thread cls._event.set() @classmethod def _peek_next(cls): # type: () -> Optional[TimeoutScheduler.Handle] """Returns the next timeout to execute, or `None` if list is empty, without modifying the list""" with cls._mutex: return cls._handles[0] if cls._handles else None @classmethod def _wait(cls, handle): # type: (Optional[TimeoutScheduler.Handle]) -> None """Waits until it is time to execute the provided handle, or until another thread calls _event.set()""" now = cls._time() # Check how much time until the next timeout if handle is None: to_wait = cls.GRACE else: to_wait = handle._when - now # Wait until the next timeout, # or until event.set() gets called in another thread. if to_wait > 0: log_runtime.debug("TimeoutScheduler Thread going to sleep @ %f " + "for %fs", now, to_wait) interrupted = cls._event.wait(to_wait) new = cls._time() log_runtime.debug("TimeoutScheduler Thread awake @ %f, slept for" + " %f, interrupted=%d", new, new - now, interrupted) # Clear the event so that we can wait on it again, # Must be done before doing the callbacks to avoid losing a set(). cls._event.clear() @classmethod def _task(cls): # type: () -> None """Executed in a background thread, this thread will automatically start when the first timeout is added and stop when the last timeout is removed or executed.""" log_runtime.debug("TimeoutScheduler Thread spawning @ %f", cls._time()) time_empty = None try: while 1: handle = cls._peek_next() if handle is None: now = cls._time() if time_empty is None: time_empty = now # 100 ms of grace time before killing the thread if cls.GRACE < now - time_empty: return else: time_empty = None cls._wait(handle) cls._poll() finally: # Worst case scenario: if this thread dies, the next scheduled # timeout will start a new one log_runtime.debug("TimeoutScheduler Thread died @ %f", cls._time()) cls._thread = None @classmethod def _poll(cls): # type: () -> None """Execute all the callbacks that were due until now""" while 1: with cls._mutex: now = cls._time() if len(cls._handles) == 0 or cls._handles[0]._when > now: # There is nothing to execute yet return # Time complexity is O(log n) handle = heapq.heappop(cls._handles) callback = None if handle is not None: callback = handle._cb handle._cb = True # Call the callback here, outside of the mutex if callable(callback): try: callback() except Exception: traceback.print_exc() @staticmethod def _time(): # type: () -> float if six.PY2: return time.time() return time.monotonic() class Handle: """Handle for a timeout, consisting of a callback and a time when it should be executed.""" __slots__ = ['_when', '_cb'] def __init__(self, when, # type: float cb # type: Optional[Union[Callable[[], None], bool]] ): # type: (...) -> None self._when = when self._cb = cb def cancel(self): # type: () -> bool """Cancels this timeout, preventing it from executing its callback""" if self._cb is None: raise Scapy_Exception( "cancel() called on previous canceled Handle") else: with TimeoutScheduler._mutex: if isinstance(self._cb, bool): # Handle was already executed. # We don't need to cancel anymore return False else: self._cb = None TimeoutScheduler.cancel(self) return True def __lt__(self, other): # type: (Any) -> bool if not isinstance(other, TimeoutScheduler.Handle): raise TypeError() return self._when < other._when def __le__(self, other): # type: (Any) -> bool if not isinstance(other, TimeoutScheduler.Handle): raise TypeError() return self._when <= other._when def __gt__(self, other): # type: (Any) -> bool if not isinstance(other, TimeoutScheduler.Handle): raise TypeError() return self._when > other._when def __ge__(self, other): # type: (Any) -> bool if not isinstance(other, TimeoutScheduler.Handle): raise TypeError() return self._when >= other._when
def __init__(self): self._mutex = RLock() self._cv = Condition(self._mutex) self._threads_started = 0 self._threads_active = 0
current_goal = None current_goal_angle = None current_goal_distance = None nav_target_list = None current_map = None last_goal = None last_map = None last_map_augmented_occ = None last_path = None last_target_point = None last_robot_point = None last_path_fail = False last_watch_angle = 0.0 is_watch_mode = False is_watch_clockwise = True goal_lock = RLock() def set_goal(goal, angle, goal_distance): global current_goal, current_goal_angle, current_goal_distance if goal is None: current_goal = None current_goal_angle = None current_goal_distance = None rospy.loginfo('Navigation goal has been cleared') else: current_goal = goal current_goal_angle = angle current_goal_distance = goal_distance if angle is not None and (angle < -math.pi or angle > math.pi): current_goal_angle = 0.0
def __setstate__(self, state): """Sets the state of this ``ArrayProxy`` during unpickling. """ self.__dict__.update(state) self._lock = dict() for key in self._image.file_map: self._lock[key] = RLock()
def __init__(self): self.step = 1 self.lock = RLock()
class LoadSpinner: """ Load spinner, show a text and an animation. """ _running_lock = RLock() _running = False VERY_FAST = 20 FAST = 16 NORMAL = 12 SLOW = 8 VERY_SLOW = 4 STDOUT_STANDARD = 0 STDOUT_DISABLE = 1 STDOUT_REDIRECT = 2 def __init__(self, text='', speed=NORMAL, new_line=True, stdout_type=STDOUT_REDIRECT, spinner=BarSpinner()): """ :param text: Text to display during the loading :param speed: Spped of the animation (VERY_SLOW, SLOW, NORMAL, FAST, VERY_FAST) :param newline: If false, the text will be erased at the end of the loading time. Otherwise it wll create a new line :param stdout_type: How the load spinner will react to new print actions: -STDOUT_STANDARD: Standard way (not recommended, risk to display strange things) -STDOUT_DISABLE: Disable the stdout until the end of the loading time -STDOUT_REDIRECT: Will bufferize new outputs and show then as soon as possible (recommended) :param spinner: Spinner animation object """ self.speed = int(speed) self.text = str(text) self.new_line = bool(new_line) self._stdout_type = int(stdout_type) self._stopped = True self._thread = None self._list_stdout = ListStream() self.update_spinner(spinner, accept_none=False) self._dirty_txt = False self._next_txt = '' self._out = None def update_spinner(self, spinner, accept_none=True): """ Change the animation character of the spinner :param spinner: Spinner object with the wanted animation character :param accept_none: If True, it will not raise error if the spinner is None (no animation is this case) :return: None """ if spinner is None: if not accept_none: raise Exception('Spinner can\'t be None') return if not isinstance(spinner, AbstractSpinner): raise Exception("Spinner must be an AbstractSpinner") self._spinchar = spinner.get_iterator() def start(self, raise_exception=False): """ Start the LoadSpinner (animation + output modification) :param raise_exception: If False, no excpetion will be raised if another spinner is currently running :return: None """ with LoadSpinner._running_lock: # Thread safe if LoadSpinner._running is True: # Check if another one is already running if raise_exception: raise LoadSpinnerException('Impossible to start: Already spinning') return LoadSpinner._running = True self._stopped = False self._out = sys.__stdout__ if self._stdout_type == self.STDOUT_DISABLE: sys.stdout = open(os.devnull, 'w') # Output disabled elif self._stdout_type == self.STDOUT_REDIRECT: sys.stdout = self._list_stdout # Output bufferized self._thread = Thread(target=self._thread_spinning, daemon=True, args=(self.speed,)) self._thread.start() def stop(self, raise_exception=False): """ Stop the LoadSpinner (animation + output modification) :param raise_exception: If False, no exception will be raised if the spinner is not currently running :return: None """ with LoadSpinner._running_lock: # Thread safe if LoadSpinner._running is False: if raise_exception: raise LoadSpinnerException('No spinner running') return if self._stopped is True or self._thread is None: # Check if this loadspinner is currently running if raise_exception: raise LoadSpinnerException('This spinner is not currently spinning') return self._stopped = True self._thread.join() LoadSpinner._running = False self._thread = None self._print_queue() self._clear_loading_line() self._out.write(self.text) if self.new_line: self._out.write('\n') # Print new line self._out.flush() else: self._clear_loading_line() # Erase loadspinner line sys.stdin.flush() sys.stdout = sys.__stdout__ # Reset stdout def _clear_loading_line(self): """ Erase the load spinner line :return: None """ white_spaces = ' ' * (len(self.text) + 5) self._out.write('\r{0}\r'.format(white_spaces)) self._out.flush() def _thread_spinning(self, speed): """ Thread method that will update the LoadSpinner animation (and print bufferized output) :param speed: Speed fo the animation """ refresh_frequency = 1 / speed sleep_time = 0.05 self._print_total_sentence() start_time = time() while not self._stopped: self._check_dirty_text() self._print_queue() if time() - start_time >= refresh_frequency: self._print_total_sentence() start_time = time() sleep(sleep_time) def _check_dirty_text(self): """ Check if the LoadSpinner has been changed :return: None """ if self._dirty_txt: self._dirty_txt = False self._clear_loading_line() self.text = self._next_txt self._print_total_sentence() def _print_queue(self): """ Print bufferized output :return: None """ if self._stdout_type == self.STDOUT_REDIRECT: if len(self._list_stdout.queue) > 0: self._clear_loading_line() has_new_line = False while len(self._list_stdout.queue) > 0: txt = self._list_stdout.queue.pop(0) has_new_line = len(txt) > 0 and txt[-1] == '\n' self._out.write(txt) if not has_new_line: self._out.write('\n') self._out.flush() self._print_total_sentence() def _print_total_sentence(self): """ Print the LoadSPinner sentence and the spinner character :return: """ white_spaces = 4 end = '{0}{1}'.format(' ' * white_spaces, '\b' * (white_spaces - 1)) self._out.write('\r{0}{1}{2}'.format(self.text, next(self._spinchar), end)) self._out.flush() def update(self, new_txt=None, spinner=None): """ Modify the spinner type and the spinner sentence. :param new_txt: New text to show during the animation :spinner: New spinner object with the new characters for the animation :return: None """ if new_txt is not None: self._next_txt = new_txt self._dirty_txt = True self.update_spinner(spinner) def __enter__(self): self.start(raise_exception=True) return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop(raise_exception=True)
def __init__(self): self.areaDatos = AreaDatos() self.areaInstrucciones = AreaInstrucciones() self.busDatos = RLock() self.busInstrucciones = RLock()
class SparkContext(object): """ Main entry point for Spark functionality. A SparkContext represents the connection to a Spark cluster, and can be used to create L{RDD} and broadcast variables on that cluster. """ _gateway = None _jvm = None _next_accum_id = 0 _active_spark_context = None _lock = RLock() _python_includes = None # zip and egg files that need to be added to PYTHONPATH PACKAGE_EXTENSIONS = ('.zip', '.egg', '.jar') def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None, environment=None, batchSize=0, serializer=PickleSerializer(), conf=None, gateway=None, jsc=None, profiler_cls=BasicProfiler): """ Create a new SparkContext. At least the master and app name should be set, either through the named parameters here or through C{conf}. :param master: Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). :param appName: A name for your job, to display on the cluster web UI. :param sparkHome: Location where Spark is installed on cluster nodes. :param pyFiles: Collection of .zip or .py files to send to the cluster and add to PYTHONPATH. These can be paths on the local file system or HDFS, HTTP, HTTPS, or FTP URLs. :param environment: A dictionary of environment variables to set on worker nodes. :param batchSize: The number of Python objects represented as a single Java object. Set 1 to disable batching, 0 to automatically choose the batch size based on object sizes, or -1 to use an unlimited batch size :param serializer: The serializer for RDDs. :param conf: A L{SparkConf} object setting Spark properties. :param gateway: Use an existing gateway and JVM, otherwise a new JVM will be instantiated. :param jsc: The JavaSparkContext instance (optional). :param profiler_cls: A class of custom Profiler used to do profiling (default is pyspark.profiler.BasicProfiler). >>> from pyspark.context import SparkContext >>> sc = SparkContext('local', 'test') >>> sc2 = SparkContext('local', 'test2') # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... """ self._callsite = first_spark_call() or CallSite(None, None, None) SparkContext._ensure_initialized(self, gateway=gateway, conf=conf) try: self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls) except: # If an error occurs, clean up in order to allow future SparkContext creation: self.stop() raise def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls): self.environment = environment or {} # java gateway must have been launched at this point. if conf is not None and conf._jconf is not None: # conf has been initialized in JVM properly, so use conf directly. This represent the # scenario that JVM has been launched before SparkConf is created (e.g. SparkContext is # created and then stopped, and we create a new SparkConf and new SparkContext again) self._conf = conf else: self._conf = SparkConf(_jvm=SparkContext._jvm) if conf is not None: for k, v in conf.getAll(): self._conf.set(k, v) self._batchSize = batchSize # -1 represents an unlimited batch size self._unbatched_serializer = serializer if batchSize == 0: self.serializer = AutoBatchedSerializer(self._unbatched_serializer) else: self.serializer = BatchedSerializer(self._unbatched_serializer, batchSize) # Set any parameters passed directly to us on the conf if master: self._conf.setMaster(master) if appName: self._conf.setAppName(appName) if sparkHome: self._conf.setSparkHome(sparkHome) if environment: for key, value in environment.items(): self._conf.setExecutorEnv(key, value) for key, value in DEFAULT_CONFIGS.items(): self._conf.setIfMissing(key, value) # Check that we have at least the required parameters if not self._conf.contains("spark.master"): raise Exception("A master URL must be set in your configuration") if not self._conf.contains("spark.app.name"): raise Exception( "An application name must be set in your configuration") # Read back our properties from the conf in case we loaded some of them from # the classpath or an external config file self.master = self._conf.get("spark.master") self.appName = self._conf.get("spark.app.name") self.sparkHome = self._conf.get("spark.home", None) for (k, v) in self._conf.getAll(): if k.startswith("spark.executorEnv."): varName = k[len("spark.executorEnv."):] self.environment[varName] = v self.environment["PYTHONHASHSEED"] = os.environ.get( "PYTHONHASHSEED", "0") # Create the Java SparkContext through Py4J self._jsc = jsc or self._initialize_context(self._conf._jconf) # Reset the SparkConf to the one actually used by the SparkContext in JVM. self._conf = SparkConf(_jconf=self._jsc.sc().conf()) # Create a single Accumulator in Java that we'll send all our updates through; # they will be passed back to us through a TCP server self._accumulatorServer = accumulators._start_update_server() (host, port) = self._accumulatorServer.server_address self._javaAccumulator = self._jvm.PythonAccumulatorV2(host, port) self._jsc.sc().register(self._javaAccumulator) self.pythonExec = os.environ.get("PYSPARK_PYTHON", 'python') self.pythonVer = "%d.%d" % sys.version_info[:2] # Broadcast's __reduce__ method stores Broadcast instances here. # This allows other code to determine which Broadcast instances have # been pickled, so it can determine which Java broadcast objects to # send. self._pickled_broadcast_vars = set() SparkFiles._sc = self root_dir = SparkFiles.getRootDirectory() sys.path.insert(1, root_dir) # Deploy any code dependencies specified in the constructor self._python_includes = list() for path in (pyFiles or []): self.addPyFile(path) # Deploy code dependencies set by spark-submit; these will already have been added # with SparkContext.addFile, so we just need to add them to the PYTHONPATH for path in self._conf.get("spark.submit.pyFiles", "").split(","): if path != "": (dirname, filename) = os.path.split(path) if filename[-4:].lower() in self.PACKAGE_EXTENSIONS: self._python_includes.append(filename) sys.path.insert( 1, os.path.join(SparkFiles.getRootDirectory(), filename)) # Create a temporary directory inside spark.local.dir: local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir( self._jsc.sc().conf()) self._temp_dir = \ self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir, "pyspark") \ .getAbsolutePath() # profiling stats collected for each PythonRDD if self._conf.get("spark.python.profile", "false") == "true": dump_path = self._conf.get("spark.python.profile.dump", None) self.profiler_collector = ProfilerCollector( profiler_cls, dump_path) else: self.profiler_collector = None # create a signal handler which would be invoked on receiving SIGINT def signal_handler(signal, frame): self.cancelAllJobs() raise KeyboardInterrupt() # see http://stackoverflow.com/questions/23206787/ if isinstance(threading.current_thread(), threading._MainThread): signal.signal(signal.SIGINT, signal_handler) def __repr__(self): return "<SparkContext master={master} appName={appName}>".format( master=self.master, appName=self.appName, ) def _repr_html_(self): return """ <div> <p><b>SparkContext</b></p> <p><a href="{sc.uiWebUrl}">Spark UI</a></p> <dl> <dt>Version</dt> <dd><code>v{sc.version}</code></dd> <dt>Master</dt> <dd><code>{sc.master}</code></dd> <dt>AppName</dt> <dd><code>{sc.appName}</code></dd> </dl> </div> """.format(sc=self) def _initialize_context(self, jconf): """ Initialize SparkContext in function to allow subclass specific initialization """ return self._jvm.JavaSparkContext(jconf) @classmethod def _ensure_initialized(cls, instance=None, gateway=None, conf=None): """ Checks whether a SparkContext is initialized or not. Throws error if a SparkContext is already running. """ with SparkContext._lock: if not SparkContext._gateway: SparkContext._gateway = gateway or launch_gateway(conf) SparkContext._jvm = SparkContext._gateway.jvm if instance: if (SparkContext._active_spark_context and SparkContext._active_spark_context != instance): currentMaster = SparkContext._active_spark_context.master currentAppName = SparkContext._active_spark_context.appName callsite = SparkContext._active_spark_context._callsite # Raise error if there is already a running Spark context raise ValueError( "Cannot run multiple SparkContexts at once; " "existing SparkContext(app=%s, master=%s)" " created by %s at %s:%s " % (currentAppName, currentMaster, callsite.function, callsite.file, callsite.linenum)) else: SparkContext._active_spark_context = instance def __getnewargs__(self): # This method is called when attempting to pickle SparkContext, which is always an error: raise Exception( "It appears that you are attempting to reference SparkContext from a broadcast " "variable, action, or transformation. SparkContext can only be used on the driver, " "not in code that it run on workers. For more information, see SPARK-5063." ) def __enter__(self): """ Enable 'with SparkContext(...) as sc: app(sc)' syntax. """ return self def __exit__(self, type, value, trace): """ Enable 'with SparkContext(...) as sc: app' syntax. Specifically stop the context on exit of the with block. """ self.stop() @classmethod def getOrCreate(cls, conf=None): """ Get or instantiate a SparkContext and register it as a singleton object. :param conf: SparkConf (optional) """ with SparkContext._lock: if SparkContext._active_spark_context is None: SparkContext(conf=conf or SparkConf()) return SparkContext._active_spark_context def setLogLevel(self, logLevel): """ Control our logLevel. This overrides any user-defined log settings. Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN """ self._jsc.setLogLevel(logLevel) @classmethod def setSystemProperty(cls, key, value): """ Set a Java system property, such as spark.executor.memory. This must must be invoked before instantiating SparkContext. """ SparkContext._ensure_initialized() SparkContext._jvm.java.lang.System.setProperty(key, value) @property def version(self): """ The version of Spark on which this application is running. """ return self._jsc.version() @property @ignore_unicode_prefix def applicationId(self): """ A unique identifier for the Spark application. Its format depends on the scheduler implementation. * in case of local spark app something like 'local-1433865536131' * in case of YARN something like 'application_1433865536131_34483' >>> sc.applicationId # doctest: +ELLIPSIS u'local-...' """ return self._jsc.sc().applicationId() @property def uiWebUrl(self): """Return the URL of the SparkUI instance started by this SparkContext""" return self._jsc.sc().uiWebUrl().get() @property def startTime(self): """Return the epoch time when the Spark Context was started.""" return self._jsc.startTime() @property def defaultParallelism(self): """ Default level of parallelism to use when not given by user (e.g. for reduce tasks) """ return self._jsc.sc().defaultParallelism() @property def defaultMinPartitions(self): """ Default min number of partitions for Hadoop RDDs when not given by user """ return self._jsc.sc().defaultMinPartitions() def stop(self): """ Shut down the SparkContext. """ if getattr(self, "_jsc", None): try: self._jsc.stop() except Py4JError: # Case: SPARK-18523 warnings.warn( 'Unable to cleanly shutdown Spark JVM process.' ' It is possible that the process has crashed,' ' been killed or may also be in a zombie state.', RuntimeWarning) pass finally: self._jsc = None if getattr(self, "_accumulatorServer", None): self._accumulatorServer.shutdown() self._accumulatorServer = None with SparkContext._lock: SparkContext._active_spark_context = None def emptyRDD(self): """ Create an RDD that has no partitions or elements. """ return RDD(self._jsc.emptyRDD(), self, NoOpSerializer()) def range(self, start, end=None, step=1, numSlices=None): """ Create a new RDD of int containing elements from `start` to `end` (exclusive), increased by `step` every element. Can be called the same way as python's built-in range() function. If called with a single argument, the argument is interpreted as `end`, and `start` is set to 0. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numSlices: the number of partitions of the new RDD :return: An RDD of int >>> sc.range(5).collect() [0, 1, 2, 3, 4] >>> sc.range(2, 4).collect() [2, 3] >>> sc.range(1, 7, 2).collect() [1, 3, 5] """ if end is None: end = start start = 0 return self.parallelize(xrange(start, end, step), numSlices) def parallelize(self, c, numSlices=None): """ Distribute a local Python collection to form an RDD. Using xrange is recommended if the input represents a range for performance. >>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect() [[0], [2], [3], [4], [6]] >>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect() [[], [0], [], [2], [4]] """ numSlices = int( numSlices) if numSlices is not None else self.defaultParallelism if isinstance(c, xrange): size = len(c) if size == 0: return self.parallelize([], numSlices) step = c[1] - c[0] if size > 1 else 1 start0 = c[0] def getStart(split): return start0 + int((split * size / numSlices)) * step def f(split, iterator): return xrange(getStart(split), getStart(split + 1), step) return self.parallelize([], numSlices).mapPartitionsWithIndex(f) # Calling the Java parallelize() method with an ArrayList is too slow, # because it sends O(n) Py4J commands. As an alternative, serialized # objects are written to a file and loaded through textFile(). tempFile = NamedTemporaryFile(delete=False, dir=self._temp_dir) try: # Make sure we distribute data evenly if it's smaller than self.batchSize if "__len__" not in dir(c): c = list(c) # Make it a list so we can compute its length batchSize = max(1, min(len(c) // numSlices, self._batchSize or 1024)) serializer = BatchedSerializer(self._unbatched_serializer, batchSize) serializer.dump_stream(c, tempFile) tempFile.close() readRDDFromFile = self._jvm.PythonRDD.readRDDFromFile jrdd = readRDDFromFile(self._jsc, tempFile.name, numSlices) finally: # readRDDFromFile eagerily reads the file so we can delete right after. os.unlink(tempFile.name) return RDD(jrdd, self, serializer) def pickleFile(self, name, minPartitions=None): """ Load an RDD previously saved using L{RDD.saveAsPickleFile} method. >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> sc.parallelize(range(10)).saveAsPickleFile(tmpFile.name, 5) >>> sorted(sc.pickleFile(tmpFile.name, 3).collect()) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ minPartitions = minPartitions or self.defaultMinPartitions return RDD(self._jsc.objectFile(name, minPartitions), self) @ignore_unicode_prefix def textFile(self, name, minPartitions=None, use_unicode=True): """ Read a text file from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI, and return it as an RDD of Strings. If use_unicode is False, the strings will be kept as `str` (encoding as `utf-8`), which is faster and smaller than unicode. (Added in Spark 1.2) >>> path = os.path.join(tempdir, "sample-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello world!") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello world!'] """ minPartitions = minPartitions or min(self.defaultParallelism, 2) return RDD(self._jsc.textFile(name, minPartitions), self, UTF8Deserializer(use_unicode)) @ignore_unicode_prefix def wholeTextFiles(self, path, minPartitions=None, use_unicode=True): """ Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file. If use_unicode is False, the strings will be kept as `str` (encoding as `utf-8`), which is faster and smaller than unicode. (Added in Spark 1.2) For example, if you have the following files:: hdfs://a-hdfs-path/part-00000 hdfs://a-hdfs-path/part-00001 ... hdfs://a-hdfs-path/part-nnnnn Do C{rdd = sparkContext.wholeTextFiles("hdfs://a-hdfs-path")}, then C{rdd} contains:: (a-hdfs-path/part-00000, its content) (a-hdfs-path/part-00001, its content) ... (a-hdfs-path/part-nnnnn, its content) .. note:: Small files are preferred, as each file will be loaded fully in memory. >>> dirPath = os.path.join(tempdir, "files") >>> os.mkdir(dirPath) >>> with open(os.path.join(dirPath, "1.txt"), "w") as file1: ... _ = file1.write("1") >>> with open(os.path.join(dirPath, "2.txt"), "w") as file2: ... _ = file2.write("2") >>> textFiles = sc.wholeTextFiles(dirPath) >>> sorted(textFiles.collect()) [(u'.../1.txt', u'1'), (u'.../2.txt', u'2')] """ minPartitions = minPartitions or self.defaultMinPartitions return RDD( self._jsc.wholeTextFiles(path, minPartitions), self, PairDeserializer(UTF8Deserializer(use_unicode), UTF8Deserializer(use_unicode))) def binaryFiles(self, path, minPartitions=None): """ .. note:: Experimental Read a directory of binary files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI as a byte array. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file. .. note:: Small files are preferred, large file is also allowable, but may cause bad performance. """ minPartitions = minPartitions or self.defaultMinPartitions return RDD(self._jsc.binaryFiles(path, minPartitions), self, PairDeserializer(UTF8Deserializer(), NoOpSerializer())) def binaryRecords(self, path, recordLength): """ .. note:: Experimental Load data from a flat binary file, assuming each record is a set of numbers with the specified numerical format (see ByteBuffer), and the number of bytes per record is constant. :param path: Directory to the input data files :param recordLength: The length at which to split the records """ return RDD(self._jsc.binaryRecords(path, recordLength), self, NoOpSerializer()) def _dictToJavaMap(self, d): jm = self._jvm.java.util.HashMap() if not d: d = {} for k, v in d.items(): jm[k] = v return jm def sequenceFile(self, path, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, minSplits=None, batchSize=0): """ Read a Hadoop SequenceFile with arbitrary key and value Writable class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is as follows: 1. A Java RDD is created from the SequenceFile or other InputFormat, and the key and value Writable classes 2. Serialization is attempted via Pyrolite pickling 3. If this fails, the fallback is to call 'toString' on each key and value 4. C{PickleSerializer} is used to deserialize pickled objects on the Python side :param path: path to sequncefile :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: :param valueConverter: :param minSplits: minimum splits in dataset (default min(2, sc.defaultParallelism)) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ minSplits = minSplits or min(self.defaultParallelism, 2) jrdd = self._jvm.PythonRDD.sequenceFile(self._jsc, path, keyClass, valueClass, keyConverter, valueConverter, minSplits, batchSize) return RDD(jrdd, self) def newAPIHadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read a 'new API' Hadoop InputFormat with arbitrary key and value class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is the same as for sc.sequenceFile. A Hadoop configuration can be passed in as a Python dict. This will be converted into a Configuration in Java :param path: path to Hadoop file :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.newAPIHadoopFile(self._jsc, path, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def newAPIHadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read a 'new API' Hadoop InputFormat with arbitrary key and value class, from an arbitrary Hadoop configuration, which is passed in as a Python dict. This will be converted into a Configuration in Java. The mechanism is the same as for sc.sequenceFile. :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.newAPIHadoopRDD(self._jsc, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def hadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read an 'old' Hadoop InputFormat with arbitrary key and value class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is the same as for sc.sequenceFile. A Hadoop configuration can be passed in as a Python dict. This will be converted into a Configuration in Java. :param path: path to Hadoop file :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapred.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.hadoopFile(self._jsc, path, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def hadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read an 'old' Hadoop InputFormat with arbitrary key and value class, from an arbitrary Hadoop configuration, which is passed in as a Python dict. This will be converted into a Configuration in Java. The mechanism is the same as for sc.sequenceFile. :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapred.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.hadoopRDD(self._jsc, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def _checkpointFile(self, name, input_deserializer): jrdd = self._jsc.checkpointFile(name) return RDD(jrdd, self, input_deserializer) @ignore_unicode_prefix def union(self, rdds): """ Build the union of a list of RDDs. This supports unions() of RDDs with different serialized formats, although this forces them to be reserialized using the default serializer: >>> path = os.path.join(tempdir, "union-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello'] >>> parallelized = sc.parallelize(["World!"]) >>> sorted(sc.union([textFile, parallelized]).collect()) [u'Hello', 'World!'] """ first_jrdd_deserializer = rdds[0]._jrdd_deserializer if any(x._jrdd_deserializer != first_jrdd_deserializer for x in rdds): rdds = [x._reserialize() for x in rdds] first = rdds[0]._jrdd rest = [x._jrdd for x in rdds[1:]] return RDD(self._jsc.union(first, rest), self, rdds[0]._jrdd_deserializer) def broadcast(self, value): """ Broadcast a read-only variable to the cluster, returning a L{Broadcast<pyspark.broadcast.Broadcast>} object for reading it in distributed functions. The variable will be sent to each cluster only once. """ return Broadcast(self, value, self._pickled_broadcast_vars) def accumulator(self, value, accum_param=None): """ Create an L{Accumulator} with the given initial value, using a given L{AccumulatorParam} helper object to define how to add values of the data type if provided. Default AccumulatorParams are used for integers and floating-point numbers if you do not provide one. For other types, a custom AccumulatorParam can be used. """ if accum_param is None: if isinstance(value, int): accum_param = accumulators.INT_ACCUMULATOR_PARAM elif isinstance(value, float): accum_param = accumulators.FLOAT_ACCUMULATOR_PARAM elif isinstance(value, complex): accum_param = accumulators.COMPLEX_ACCUMULATOR_PARAM else: raise TypeError("No default accumulator param for type %s" % type(value)) SparkContext._next_accum_id += 1 return Accumulator(SparkContext._next_accum_id - 1, value, accum_param) def addFile(self, path, recursive=False): """ Add a file to be downloaded with this Spark job on every node. The C{path} passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs, use L{SparkFiles.get(fileName)<pyspark.files.SparkFiles.get>} with the filename to find its download location. A directory can be given if the recursive option is set to True. Currently directories are only supported for Hadoop-supported filesystems. >>> from pyspark import SparkFiles >>> path = os.path.join(tempdir, "test.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("100") >>> sc.addFile(path) >>> def func(iterator): ... with open(SparkFiles.get("test.txt")) as testFile: ... fileVal = int(testFile.readline()) ... return [x * fileVal for x in iterator] >>> sc.parallelize([1, 2, 3, 4]).mapPartitions(func).collect() [100, 200, 300, 400] """ self._jsc.sc().addFile(path, recursive) def addPyFile(self, path): """ Add a .py or .zip dependency for all tasks to be executed on this SparkContext in the future. The C{path} passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI. """ self.addFile(path) (dirname, filename) = os.path.split( path) # dirname may be directory or HDFS/S3 prefix if filename[-4:].lower() in self.PACKAGE_EXTENSIONS: self._python_includes.append(filename) # for tests in local mode sys.path.insert( 1, os.path.join(SparkFiles.getRootDirectory(), filename)) if sys.version > '3': import importlib importlib.invalidate_caches() def setCheckpointDir(self, dirName): """ Set the directory under which RDDs are going to be checkpointed. The directory must be a HDFS path if running on a cluster. """ self._jsc.sc().setCheckpointDir(dirName) def _getJavaStorageLevel(self, storageLevel): """ Returns a Java StorageLevel based on a pyspark.StorageLevel. """ if not isinstance(storageLevel, StorageLevel): raise Exception( "storageLevel must be of type pyspark.StorageLevel") newStorageLevel = self._jvm.org.apache.spark.storage.StorageLevel return newStorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, storageLevel.deserialized, storageLevel.replication) def setJobGroup(self, groupId, description, interruptOnCancel=False): """ Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can use L{SparkContext.cancelJobGroup} to cancel all running jobs in this group. >>> import threading >>> from time import sleep >>> result = "Not Set" >>> lock = threading.Lock() >>> def map_func(x): ... sleep(100) ... raise Exception("Task should have been cancelled") >>> def start_job(x): ... global result ... try: ... sc.setJobGroup("job_to_cancel", "some description") ... result = sc.parallelize(range(x)).map(map_func).collect() ... except Exception as e: ... result = "Cancelled" ... lock.release() >>> def stop_job(): ... sleep(5) ... sc.cancelJobGroup("job_to_cancel") >>> supress = lock.acquire() >>> supress = threading.Thread(target=start_job, args=(10,)).start() >>> supress = threading.Thread(target=stop_job).start() >>> supress = lock.acquire() >>> print(result) Cancelled If interruptOnCancel is set to true for the job group, then job cancellation will result in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead. """ self._jsc.setJobGroup(groupId, description, interruptOnCancel) def setLocalProperty(self, key, value): """ Set a local property that affects jobs submitted from this thread, such as the Spark fair scheduler pool. """ self._jsc.setLocalProperty(key, value) def getLocalProperty(self, key): """ Get a local property set in this thread, or null if it is missing. See L{setLocalProperty} """ return self._jsc.getLocalProperty(key) def setJobDescription(self, value): """ Set a human readable description of the current job. """ self._jsc.setJobDescription(value) def sparkUser(self): """ Get SPARK_USER for user who is running SparkContext. """ return self._jsc.sc().sparkUser() def cancelJobGroup(self, groupId): """ Cancel active jobs for the specified group. See L{SparkContext.setJobGroup} for more information. """ self._jsc.sc().cancelJobGroup(groupId) def cancelAllJobs(self): """ Cancel all jobs that have been scheduled or are running. """ self._jsc.sc().cancelAllJobs() def statusTracker(self): """ Return :class:`StatusTracker` object """ return StatusTracker(self._jsc.statusTracker()) def runJob(self, rdd, partitionFunc, partitions=None, allowLocal=False): """ Executes the given partitionFunc on the specified set of partitions, returning the result as an array of elements. If 'partitions' is not specified, this will run over all partitions. >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part]) [0, 1, 4, 9, 16, 25] >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True) [0, 1, 16, 25] """ if partitions is None: partitions = range(rdd._jrdd.partitions().size()) # Implementation note: This is implemented as a mapPartitions followed # by runJob() in order to avoid having to pass a Python lambda into # SparkContext#runJob. mappedRDD = rdd.mapPartitions(partitionFunc) port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) return list(_load_from_socket(port, mappedRDD._jrdd_deserializer)) def show_profiles(self): """ Print the profile stats to stdout """ self.profiler_collector.show_profiles() def dump_profiles(self, path): """ Dump the profile stats into directory `path` """ self.profiler_collector.dump_profiles(path) def getConf(self): conf = SparkConf() conf.setAll(self._conf.getAll()) return conf
def __init__(self, socket, encryptor, decryptor): self.actual_socket = socket self.encryptor = encryptor self.decryptor = decryptor self.lock = RLock()
def __init__( self, url=None, # type: Optional[str] dogstatsd_url=None, # type: Optional[str] ): # type: (...) -> None """ Create a new ``Tracer`` instance. A global tracer is already initialized for common usage, so there is no need to initialize your own ``Tracer``. :param url: The Datadog agent URL. :param dogstatsd_url: The DogStatsD URL. """ self.log = log self._filters = [] # type: List[TraceFilter] # globally set tags self.tags = config.tags.copy() # a buffer for service info so we don't perpetually send the same things self._services = set() # type: Set[str] # Runtime id used for associating data collected during runtime to # traces self._pid = getpid() self.enabled = asbool(get_env("trace", "enabled", default=True)) self.context_provider = DefaultContextProvider() self.sampler = DatadogSampler() # type: BaseSampler self.priority_sampler = RateByServiceSampler( ) # type: Optional[BasePrioritySampler] self._dogstatsd_url = agent.get_stats_url( ) if dogstatsd_url is None else dogstatsd_url if self._use_log_writer() and url is None: writer = LogWriter() # type: TraceWriter else: url = url or agent.get_trace_url() agent.verify_url(url) writer = AgentWriter( agent_url=url, sampler=self.sampler, priority_sampler=self.priority_sampler, dogstatsd=get_dogstatsd_client(self._dogstatsd_url), report_metrics=config.health_metrics_enabled, sync_mode=self._use_sync_mode(), ) self.writer = writer # type: TraceWriter # DD_TRACER_... should be deprecated after version 1.0.0 is released pfe_default_value = False pfms_default_value = 500 if "DD_TRACER_PARTIAL_FLUSH_ENABLED" in os.environ or "DD_TRACER_PARTIAL_FLUSH_MIN_SPANS" in os.environ: deprecation("DD_TRACER_... use DD_TRACE_... instead", version="1.0.0") pfe_default_value = asbool( get_env("tracer", "partial_flush_enabled", default=pfe_default_value)) pfms_default_value = int( get_env("tracer", "partial_flush_min_spans", default=pfms_default_value) # type: ignore[arg-type] ) self._partial_flush_enabled = asbool( get_env("trace", "partial_flush_enabled", default=pfe_default_value)) self._partial_flush_min_spans = int( get_env("trace", "partial_flush_min_spans", default=pfms_default_value) # type: ignore[arg-type] ) self._initialize_span_processors() self._hooks = _hooks.Hooks() atexit.register(self._atexit) forksafe.register(self._child_after_fork) self._shutdown_lock = RLock() self._new_process = False
def __init__(self, block_cache, block_validator, state_view_factory, chain_head_lock, on_chain_updated, chain_id_manager, data_dir, config_dir, chain_observers, metrics_registry=None): """Initialize the ChainController Args: block_cache: The cache of all recent blocks and the processing state associated with them. block_validator: The object to use for submitting block validation work. state_view_factory: A factory that can be used to create read- only views of state for a particular merkle root, in particular the state as it existed when a particular block was the chain head. chain_head_lock: Lock to hold while the chain head is being updated, this prevents other components that depend on the chain head and the BlockStore from having the BlockStore change under them. This lock is only for core Journal components (BlockPublisher and ChainController), other components should handle block not found errors from the BlockStore explicitly. on_chain_updated: The callback to call to notify the rest of the system the head block in the chain has been changed. chain_id_manager: The ChainIdManager instance. data_dir: path to location where persistent data for the consensus module can be stored. config_dir: path to location where config data for the consensus module can be found. chain_observers (list of :obj:`ChainObserver`): A list of chain observers. metrics_registry: (Optional) Pyformance metrics registry handle for creating new metrics. Returns: None """ self._lock = RLock() self._chain_head_lock = chain_head_lock self._block_cache = block_cache self._block_store = block_cache.block_store self._state_view_factory = state_view_factory self._notify_on_chain_updated = on_chain_updated self._data_dir = data_dir self._config_dir = config_dir self._chain_id_manager = chain_id_manager self._chain_head = None self._chain_observers = chain_observers self._metrics_registry = metrics_registry if metrics_registry: self._chain_head_gauge = GaugeWrapper( metrics_registry.gauge('chain_head', default='no chain head')) self._committed_transactions_count = CounterWrapper( metrics_registry.counter('committed_transactions_count')) self._block_num_gauge = GaugeWrapper( metrics_registry.gauge('block_num')) self._blocks_considered_count = CounterWrapper( metrics_registry.counter('blocks_considered_count')) else: self._chain_head_gauge = GaugeWrapper() self._committed_transactions_count = CounterWrapper() self._block_num_gauge = GaugeWrapper() self._blocks_considered_count = CounterWrapper() self._block_queue = queue.Queue() self._chain_thread = None self._block_validator = block_validator # Only run this after all member variables have been bound self._set_chain_head_from_block_store()
def __init__(self): super(MockFS, self).__init__() self.root = {} # {folderName:{}} {fileName: MyIO} self.lock = RLock()
return self.nb_orthologs_metazoa def _get_nb_orthologs_non_metazoa(self): return self.nb_orthologs_non_metazoa def _get_pssm_non_metazoa(self): return self.pssm_non_metazoa def _get_pssm_metazoa(self): return self.pssm_metazoa def _get_pattern(self): return self.pattern lock = RLock() class fill_table(Thread): def __init__(self, genes, phospho_ELM, path2fastas, path2align, max_window, path, pattern, color, align_ortho_window, writer): Thread.__init__(self) self.genes = genes self.phospho_ELM = phospho_ELM self.path2fastas = path2fastas self.path2align = path2align self.max_window = max_window self.path = path self.pattern = pattern self.color = color self.align_ortho_window = align_ortho_window
def __init__(self, func, name=None, doc=None): self.__name__ = name or func.__name__ self.__module__ = func.__module__ self.__doc__ = doc or func.__doc__ self.func = func self.lock = RLock()
def __init__(self): self.lock = RLock() self.checksums = {}
def mwa_client(): version_string = get_pretty_version_string() print(version_string) epi = "\nExamples: "\ "\nmwa_client -c csvfile -d destdir " \ "Submit jobs in the csv file, monitor them, then download the files, then exit" \ "\nmwa_client -c csvfile -s " \ "Submit jobs in the csv file, then exit" \ "\nmwa_client -d destdir -w JOBID " \ "Download the job id (assuming it is ready to download), then exit" \ "\nmwa_client -d destdir -w all " \ "Download any ready to download jobs, then exit" \ "\nmwa_client -d destdir -w all -e error_file " \ "Download any ready to download jobs, then exit, writing any errors to error_file" \ "\nmwa_client -l " \ "List all of your jobs and their status, then exit" \ desc = "{0}\n==============================\n\n" \ "The mwa_client is a command-line tool for submitting, monitoring and \n" \ "downloading jobs from the MWA ASVO (https://asvo.mwatelescope.org). \n" \ "Please see README.md for csv file format and other details.".format(version_string) parser = argparse.ArgumentParser( description=desc, epilog=epi, formatter_class=argparse.RawDescriptionHelpFormatter) group = parser.add_mutually_exclusive_group() group.add_argument( "-s", "--submit-only", action="store_true", dest="submit_only", help="submit job(s) from csv file then exit (-d is ignored)", default=False) group.add_argument( "-l", "--list-only", action="store_true", dest="list_only", help= "List the user's active job(s) and exit immediately (-s, -c & -d are ignored)", default=False) group.add_argument( "-w", "--download-only", action=ParseDownloadOnly, dest="download_job_id", help= "Download the job id (-w DOWNLOAD_JOB_ID), if it is ready; or all downloadable jobs " "(-w all | -w 0), then exit (-s, -c & -l are ignored)") parser.add_argument("-c", "--csv", dest="csvfile", help="csv job file", metavar="FILE") parser.add_argument("-d", "--dir", dest="outdir", help="download directory", metavar="DIR") parser.add_argument("-e", "--error-file", "--errfile", dest="errfile", help="Write errors in json format to an error file", default=None) parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", help="verbose output", default=False) args = parser.parse_args() # Figure out what mode we are running in, based on the command line args mode_submit_only = (args.submit_only is True) mode_list_only = (args.list_only is True) mode_download_only = not (args.download_job_id is None) # full mode is the default- submit, monitor, download mode_full = not (mode_submit_only or mode_list_only or mode_download_only) verbose = args.verbose # Check that we specify a csv file if need one if args.csvfile is None and (mode_submit_only or mode_full): raise Exception('Error: csvfile not specified') # Check the -d parameter is valid outdir = './' if args.outdir: outdir = args.outdir if not os.path.isdir(outdir): raise Exception( "Error: Output directory {0} is invalid.".format(outdir)) host = os.environ.get('MWA_ASVO_HOST', 'asvo.mwatelescope.org') if not host: raise Exception('[ERROR] MWA_ASVO_HOST env variable not defined') port = os.environ.get('MWA_ASVO_PORT', '8778') if not port: raise Exception('[ERROR] MWA_ASVO_PORT env variable not defined') user = os.environ.get('ASVO_USER', None) if user: print( "[WARNING] ASVO_USER environment variable is no longer used by the mwa_client- " "you should remove it from your .profile/.bashrc/startup scripts.") passwd = os.environ.get('ASVO_PASS', None) if passwd: print( "[WARNING] ASVO_PASS environment variable is no longer used by the mwa_client- " "you should remove it from your .profile/.bashrc/startup scripts.") api_key = os.environ.get('MWA_ASVO_API_KEY', None) if not api_key: raise Exception( '[ERROR] MWA_ASVO_API_KEY env variable not defined. Log in to the MWA ASVO web site- ' 'https://asvo.mwatelescope.org/settings to obtain your API KEY, then place the following ' 'into your .profile/.bashrc/startup scripts (where xxx is your API key):\n' ' export MWA_ASVO_API_KEY=xxx\n') ssl_verify = os.environ.get("SSL_VERIFY", "1") if ssl_verify == "1": sslopt = {'cert_reqs': ssl.CERT_REQUIRED} else: sslopt = {'cert_reqs': ssl.CERT_NONE} # Setup status thread. This will be used to update stdout with status info status_queue = Queue() status_thread = Thread(target=status_func, args=(status_queue, )) status_thread.daemon = True status_thread.start() # Download queue keeps track of all in progress downloads download_queue = Queue() # Result queue keeps track of job completion result_queue = Queue() submit_lock = RLock() jobs_to_submit = [] if mode_submit_only or mode_full: jobs_to_submit = parse_csv(args.csvfile) if len(jobs_to_submit) == 0: raise Exception("Error: No jobs to submit") params = (host, port, api_key) status_queue.put("Connecting to MWA ASVO ({0}:{1})...".format(host, port)) session = Session.login(*params) status_queue.put("Connected to MWA ASVO") jobs_list = [] # Take an action depending on command line options specified if mode_submit_only or mode_full: jobs_list = submit_jobs(session, jobs_to_submit, status_queue) elif mode_list_only: job_count = get_jobs_status(session, status_queue, verbose) if job_count == 0: print("You have no jobs.") elif mode_download_only: # JobID 0 is used to download ALL of the user's ready to download jobs if args.download_job_id == 0: jobs_list = enqueue_all_ready_to_download_jobs( session, download_queue, status_queue, verbose) if len(jobs_list) == 0: print("You have no jobs that are ready to download.") # exit gracefully status_queue.put(None) status_thread.join() return else: jobs_list = check_job_is_downloadable_and_enqueue( session, download_queue, result_queue, args.download_job_id) if mode_submit_only or mode_list_only: # Exit- user opted to submit only or list only status_queue.put(None) status_thread.join() return if mode_full: # Initiate a notifier thread to get updates from the server status_queue.put("Connecting to MWA ASVO Notifier...") notify = Notify.login(*params, sslopt=sslopt) status_queue.put("Connected to MWA ASVO Notifier") notify_thread = Thread(target=notify_func, args=(notify, submit_lock, jobs_list, download_queue, result_queue, status_queue, verbose)) notify_thread.daemon = True notify_thread.start() threads = [] for i in range(4): # Launch a download thread t = Thread(target=download_func, args=(submit_lock, jobs_list, download_queue, result_queue, status_queue, session, outdir)) threads.append(t) t.daemon = True t.start() results = [] while True: with submit_lock: if len(jobs_list) == 0: break try: r = result_queue.get(timeout=1) if not r: raise Exception('Error: Control connection lost, exiting') results.append(r) except Empty: continue for _ in threads: download_queue.put(None) for t in threads: t.join() if mode_full: notify.close() notify_thread.join() status_queue.put(None) status_thread.join() while not result_queue.empty(): r = result_queue.get() if not r: continue results.append(r) # If we specified an error file, write to that too if args.errfile: # open the error file for overwrite, even if we have no errors, so we clear the file error_file = open(args.errfile, "w") if len(results) > 0: print('There were errors:') json_list = [] for r in results: # Output errors to the screen print(r.colour_message) # Put results into a JSON object json_list.append({ 'job_id': r.job_id, 'obs_id': r.obs_id, 'result': r.no_colour_message }) # If we specified an error file, write to that too if args.errfile: # open the error file for overwrite error_file = open(args.errfile, "w") json_output = json.dumps(json_list, indent=4) error_file.write(json_output) error_file.close() sys.exit(4) else: if args.errfile: error_file.close()
# Attend que les threads se terminent thread_1.join() thread_2.join() # Résultat : cTORanaTUrEdcTaOnRarTdUcEanTaOrRdTcUaEnTaORrdTcanUaErdTORTUE #################################################################################### # Les locks à la rescousse : synchronisation des threads avec les locks (<<lock>>) # #################################################################################### import random import sys from threading import Thread, RLock import time verrou = RLock() class Afficheur(Thread): """Thread chargé simplement d'afficher un mot dans la console.""" def __init__(self, mot): Thread.__init__(self) self.mot = mot def run(self): """Code à exécuter pendant l'exécution du thread.""" i = 0 while i < 5: with verrou: # On utilise là encore un context manager pour indiquer quand bloquer le lock. Le lock se débloque à la fin du bloc with for lettre in self.mot: sys.stdout.write(lettre)
def __init__(self, maxsize=10, dispose_func=None): self._maxsize = maxsize self.dispose_func = dispose_func self._container = self.ContainerCls() self.lock = RLock()
def OnInit(self): self.gui_update_lock = RLock() self.login_window = SpoofyLoginDialog(None, wx.ID_ANY, "") self.status_window = SpoofyStatusDialog(None, wx.ID_ANY, "") self.about_window = AboutDialog(None, wx.ID_ANY, "") self.login_window.Show() self.taskbar_icon = None self.spotify_client = None # Status variables self.minimized = False self.username = None self.password = None self.bitrate = None with self.gui_update_lock: self.SetTopWindow(self.status_window) # Link new log message entry events self.Bind(EVT_LOG, self.on_log_event) # Link Spotify Event handler self.Bind(EVT_SPOTIFY, self.on_spotify_event) # Link Bot Event handler self.Bind(EVT_BOT, self.on_bot_event) # Link on window close handlers self.login_window.Bind(wx.EVT_CLOSE, self.on_login_window_close) self.status_window.Bind(wx.EVT_CLOSE, self.on_status_window_close) # Link login window buttons self.login_window.login_button.Bind(wx.EVT_BUTTON, self.on_login_clicked) self.login_window.Bind(wx.EVT_CHAR_HOOK, self.on_login_window_key_up) # Link status window buttons self.status_window.exit_button.Bind(wx.EVT_BUTTON, self.on_exit_clicked) self.status_window.about_button.Bind(wx.EVT_BUTTON, self.on_about_clicked) self.status_window.log_out_button.Bind(wx.EVT_BUTTON, self.on_logout_clicked) self.status_window.minimize_button.Bind(wx.EVT_BUTTON, self.on_minimize_clicked) self.status_window.connect_button.Bind(wx.EVT_BUTTON, self.on_connect_clicked) self.status_window.Bind(wx.EVT_CHAR_HOOK, self.on_status_window_key_up) # Link about window buttons self.about_window.close_button.Bind(wx.EVT_BUTTON, self.on_about_close_clicked) # Update version label in login view and about view, and github urls from main import CLIENT_VERSION, GITHUB_LINK_BOT, GITHUB_LINK_CLIENT self.login_window.title.SetLabel(f"Spoofy Client {CLIENT_VERSION}") self.about_window.title.SetLabel(f"Spoofy Client {CLIENT_VERSION}") self.about_window.label_version_current.SetLabel( f"Current version: {CLIENT_VERSION}") self.about_window.link_client.SetLabel(GITHUB_LINK_CLIENT) self.about_window.link_client.SetURL(GITHUB_LINK_CLIENT) self.about_window.link_bot.SetLabel(GITHUB_LINK_BOT) self.about_window.link_bot.SetURL(GITHUB_LINK_BOT) return True
def decorating_function(user_function): cache = dict() stats = [0, 0] # make statistics updateable non-locally HITS, MISSES = 0, 1 # names for the stats fields make_key = _make_key cache_get = cache.get # bound method to lookup key or return None _len = len # localize the global len() function lock = RLock() # because linkedlist updates aren't threadsafe root = [] # root of the circular doubly linked list root[:] = [root, root, None, None] # initialize by pointing to self nonlocal_root = [root] # make updateable non-locally PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields if maxsize == 0: def wrapper(*args, **kwds): # no caching, just do a statistics update after a successful call result = user_function(*args, **kwds) stats[MISSES] += 1 return result elif maxsize is None: def wrapper(*args, **kwds): # simple caching without ordering or size limit key = make_key(args, kwds, typed) result = cache_get( key, root) # root used here as a unique not-found sentinel if result is not root: stats[HITS] += 1 return result result = user_function(*args, **kwds) cache[key] = result stats[MISSES] += 1 return result else: def wrapper(*args, **kwds): # size limited caching that tracks accesses by recency try: key = make_key(args, kwds, typed) if kwds or typed else args except TypeError: stats[MISSES] += 1 return user_function(*args, **kwds) with lock: link = cache_get(key) if link is not None: # record recent use of the key by moving it to the front of the list root, = nonlocal_root link_prev, link_next, key, result = link link_prev[NEXT] = link_next link_next[PREV] = link_prev last = root[PREV] last[NEXT] = root[PREV] = link link[PREV] = last link[NEXT] = root stats[HITS] += 1 return result result = user_function(*args, **kwds) with lock: root, = nonlocal_root if key in cache: # getting here means that this same key was added to the # cache while the lock was released. since the link # update is already done, we need only return the # computed result and update the count of misses. pass elif _len(cache) >= maxsize: # use the old root to store the new key and result oldroot = root oldroot[KEY] = key oldroot[RESULT] = result # empty the oldest link and make it the new root root = nonlocal_root[0] = oldroot[NEXT] oldkey = root[KEY] oldvalue = root[RESULT] root[KEY] = root[RESULT] = None # now update the cache dictionary for the new links del cache[oldkey] cache[key] = oldroot else: # put result in a new link at the front of the list last = root[PREV] link = [last, root, key, result] last[NEXT] = root[PREV] = cache[key] = link stats[MISSES] += 1 return result def cache_info(): """Report cache statistics""" with lock: return _CacheInfo(stats[HITS], stats[MISSES], maxsize, len(cache)) def cache_clear(): """Clear the cache and cache statistics""" with lock: cache.clear() root = nonlocal_root[0] root[:] = [root, root, None, None] stats[:] = [0, 0] wrapper.__wrapped__ = user_function wrapper.cache_info = cache_info wrapper.cache_clear = cache_clear return update_wrapper(wrapper, user_function)
#!/usr/bin/env python3 from collections import deque from sanic import Sanic from sanic.response import json from sanic_compress import Compress from sanic_cors import CORS from threading import RLock, Thread import requests import semver import time _REFRESH_TIMEOUT = 60 _UPSTREAM = 'https://raw.githubusercontent.com/mozilla-iot/addon-list/master/list.json' # noqa _LIST = None _LOCK = RLock() _REQUESTS = deque() # Refresh the release list every 60 seconds def update_list(): global _LIST while True: # Pull the latest release list try: r = requests.get(_UPSTREAM) if r.status_code == 200: with _LOCK: _LIST = r.json()
MAX_BLOCK_SIZE = 1000000 COIN = 100000000L # 1 btc in satoshis # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def staphash(s): return stap_hash.getPoWHash(s)
class Updater(Plugin): available_notified = False _lock = RLock() def __init__(self): if Env.get('desktop'): self.updater = DesktopUpdater() elif os.path.isdir(os.path.join(Env.get('app_dir'), '.git')): self.updater = GitUpdater(self.conf('git_command', default = 'git')) else: self.updater = SourceUpdater() addEvent('app.load', self.logVersion, priority = 10000) addEvent('app.load', self.setCrons) addEvent('updater.info', self.info) addApiView('updater.info', self.info, docs = { 'desc': 'Get updater information', 'return': { 'type': 'object', 'example': """{ 'last_check': "last checked for update", 'update_version': "available update version or empty", 'version': current_cp_version }"""} }) addApiView('updater.update', self.doUpdateView) addApiView('updater.check', self.checkView, docs = { 'desc': 'Check for available update', 'return': {'type': 'see updater.info'} }) addEvent('setting.save.updater.enabled.after', self.setCrons) def logVersion(self): info = self.info() log.info('=== VERSION %s, using %s ===', (info.get('version', {}).get('repr', 'UNKNOWN'), self.updater.getName())) def setCrons(self): fireEvent('schedule.remove', 'updater.check', single = True) if self.isEnabled(): fireEvent('schedule.interval', 'updater.check', self.autoUpdate, hours = 6) self.autoUpdate() # Check after enabling def autoUpdate(self): if self.isEnabled() and self.check() and self.conf('automatic') and not self.updater.update_failed: if self.updater.doUpdate(): # Notify before restarting try: if self.conf('notification'): info = self.updater.info() version_date = datetime.fromtimestamp(info['update_version']['date']) fireEvent('updater.updated', 'Updated to a new version with hash "%s", this version is from %s' % (info['update_version']['hash'], version_date), data = info) except: log.error('Failed notifying for update: %s', traceback.format_exc()) fireEventAsync('app.restart') return True return False def check(self, force = False): if not force and self.isDisabled(): return if self.updater.check(): if not self.available_notified and self.conf('notification') and not self.conf('automatic'): info = self.updater.info() version_date = datetime.fromtimestamp(info['update_version']['date']) fireEvent('updater.available', message = 'A new update with hash "%s" is available, this version is from %s' % (info['update_version']['hash'], version_date), data = info) self.available_notified = True return True return False def info(self, **kwargs): self._lock.acquire() info = {} try: info = self.updater.info() except: log.error('Failed getting updater info: %s', traceback.format_exc()) self._lock.release() return info def checkView(self, **kwargs): return { 'update_available': self.check(force = True), 'info': self.updater.info() } def doUpdateView(self, **kwargs): self.check() if not self.updater.update_version: log.error('Trying to update when no update is available.') success = False else: success = self.updater.doUpdate() if success: fireEventAsync('app.restart') # Assume the updater handles things if not success: success = True return { 'success': success } def doShutdown(self, *args, **kwargs): if not Env.get('dev'): removePyc(Env.get('app_dir'), show_logs = False) return super(Updater, self).doShutdown(*args, **kwargs)
from threading import RLock import numpy as np from scipy.optimize import _cobyla from .optimize import OptimizeResult, _check_unknown_options try: from itertools import izip except ImportError: izip = zip __all__ = ['fmin_cobyla'] # Workarund as _cobyla.minimize is not threadsafe # due to an unknown f2py bug and can segfault, # see gh-9658. _module_lock = RLock() def synchronized(func): @functools.wraps(func) def wrapper(*args, **kwargs): with _module_lock: return func(*args, **kwargs) return wrapper @synchronized def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, maxfun=1000, disp=None, catol=2e-4): """ Minimize a function using the Constrained Optimization By Linear Approximation (COBYLA) method. This method wraps a FORTRAN implementation of the algorithm.
def __init__(self, ip): Thread.__init__(self) self.stopped = False self.ip = ip self.lock = RLock() self.frame = None