def __init__(self, fit_intercept: bool = True, threshold: float = 1, n_threads: int = 1): ModelFirstOrder.__init__(self) ModelGeneralizedLinear.__init__(self, fit_intercept) ModelLipschitz.__init__(self) self.n_threads = n_threads self.threshold = threshold
def __init__(self, fit_intercept: bool = True, smoothness: float = 1., n_threads: int = 1): ModelFirstOrder.__init__(self) ModelGeneralizedLinear.__init__(self, fit_intercept) ModelLipschitz.__init__(self) self.n_threads = n_threads self.smoothness = smoothness
def __init__(self): ModelFirstOrder.__init__(self) self.features = None self.times = None self.censoring = None self.n_samples = None self.n_features = None self.n_failures = None self.censoring_rate = None self._model = None
def __init__(self, n_intervals: int, n_lags: np.array): ModelFirstOrder.__init__(self) ModelLipschitz.__init__(self) self.n_intervals = n_intervals self.n_features = len(n_lags) self.n_lags = n_lags for n_l in n_lags: if n_l >= n_intervals: raise ValueError("n_lags should be < n_intervals") self.labels = None self.features = None self.censoring = None self.n_cases = None
def __init__(self, n_intervals: int, n_lags: int): if n_lags >= n_intervals: raise ValueError("n_lags should be < n_intervals") ModelFirstOrder.__init__(self) ModelLipschitz.__init__(self) self.n_lags = n_lags self.n_intervals = n_intervals self.labels = None self.features = None self.censoring = None self.n_features = None self.n_samples = None
def __init__(self, fit_intercept: bool = True, n_threads: int = 1): ModelFirstOrder.__init__(self) ModelGeneralizedLinearWithIntercepts.__init__(self, fit_intercept) ModelLipschitz.__init__(self) self.n_threads = n_threads
def __init__(self, fit_intercept: bool = True, n_threads: int = 1): ModelFirstOrder.__init__(self) ModelGeneralizedLinear.__init__(self, fit_intercept) self.n_threads = n_threads