def overlaps_vs_weight(w, o, eo, factor=1.2, name= path + '/weight_overlap_comp.pdf'): fig, ax = plots.log_bin_plot(w, o, factor, xlabel=None, ylabel=None, title=None, label=r'$O^c_{ij}$') fig, ax = plots.log_bin_plot(w, eo, factor, xlabel=None, ylabel=None, title=None, label=r'$O^f_{ij}$', fig=fig, ax=ax) ax.set_ylabel(r'$O_{ij}$') ax.set_xlabel(r'$w_{ij}$') ax.set_title('') ax.legend(loc=0) fig.tight_layout() fig.savefig(name) return fig, ax
def plot_iet_aget(df, factor=1.4): idx = df.c_iet_age_na.notnull() fig, ax = plots.log_bin_plot(df.c_iet_age_na[idx], df.ovrl[idx], factor) ax.set_xlabel(r'Residual Waiting Time, $\tau_r$') ax.set_ylabel(r'$\langle O | \tau_r \rangle$') ax.set_title('Overlap as a function of residual waiting time') fig.savefig(run_path + 'age_iets.png') return fig, ax
def plot_iet_rfresh(df, factor=1.4): idx = df.c_iet_rfsh_na.notnull() fig, ax = plots.log_bin_plot(df.c_iet_rfsh_na[idx], df.ovrl[idx], factor) ax.set_xlabel(r'Relative freshness, $f$') ax.set_ylabel(r'$\langle O | f \rangle$') ax.set_title('Overlap as a function of relative freshness') fig.savefig(run_path + 'rfsh_iets.png') return fig, ax
def plot_overlap_logbin(df, factor=1.3, limit=8000): df = df[df.w < limit] fig, ax = plots.log_bin_plot(df.w, df.ovrl, factor, label='Within Company Overlap') fig, ax = plots.log_bin_plot(df.w, df.e_ovrl, factor, label='Full network', fig=fig, ax=ax) ax.set_xlabel(r'$w$') ax.set_ylabel(r'$\langle O | w \rangle$') ax.set_title('Overlap as a function of number of calls') ax.legend() fig.savefig(run_path + 'overlap_logbin_calls.png') return fig, ax
def plot_btrns(df, factor=1.4): idx = df.c_brtrn.notnull() fig, ax = plots.log_bin_plot(df.c_brtrn[idx], df.ovrl[idx], factor, label='Bursty Trains') fig, ax = plots.log_bin_plot(df.c_wkn_t[idx], df.ovrl[idx], factor, label='Number of Calls', fig=fig, ax=ax) ax.set_xlabel(r'Residual Waiting Time, $\tau_r$') ax.set_ylabel(r'$\langle O | \tau_r \rangle$') ax.set_title('Overlap as a function of residual waiting time') ax.legend() fig.savefig(run_path + 'brtrn.png') return fig, ax
def plot_overlap_rank_logbin(df, factor=1.3, limit=8000, overlap_rank=True): df = df[df.w < limit] fig, ax = plots.log_bin_plot(df.w, rankdata(df.ovrl) / df.shape[0], factor, label='Within Company Overlap') fig, ax = plots.log_bin_plot(df.w, rankdata(df.e_ovrl) / df.shape[0], factor, label='Full network', fig=fig, ax=ax) ax.set_xlabel(r'$w$') ax.set_ylabel(r'$\langle Rank(O) | w \rangle$') ax.set_title('Rank of overlap as a function of number of calls') ax.legend() fig.savefig(run_path + 'overlap_rank_logbin_calls.png') return fig, ax
def plot_iet_mean(df, factor=1.3): idx = df.c_iet_mu_na.notnull() fig, ax = plots.log_bin_plot(df.c_iet_mu_na[idx], df.ovrl[idx], factor, label='Naive') idx = df.c_iet_mu_km.notnull() fig, ax = plots.log_bin_plot(df.c_iet_mu_km[idx], df.ovrl[idx], factor, label='KM', fig=fig, ax=ax) ax.legend() ax.set_xlabel(r'Mean inter-event time, $\tau$') ax.set_ylabel(r'$\langle O | \tau \rangle$') ax.set_title('Overlap as a function of mean inter-event time') fig.savefig(run_path + 'mean_iets.png') return fig, ax
def plot_iet_sig(df, factor=1.2): idx = df.c_iet_sig_na.notnull() fig, ax = plots.log_bin_plot(df.c_iet_sig_na[idx], df.ovrl[idx], factor, label='Naive') idx = df.c_iet_sig_km.notnull() fig, ax = plots.log_bin_plot(df.c_iet_sig_km[idx], df.ovrl[idx], factor, label='KM', fig=fig, ax=ax) ax.legend() ax.set_xlabel(r'Inter-event time standard deviation, $\sigma_{\tau}$') ax.set_ylabel(r'$\langle O | \sigma_{\tau}\rangle$') ax.set_title( 'Overlap as a function of inter-event time standard deviation') fig.savefig(run_path + 'std_iets.png') return fig, ax