예제 #1
0
파일: ome.py 프로젝트: uw-loci/multiscale
def get_spacing_tif(file_path, axis):
    with tif.TiffFile(str(file_path)) as tifr:
        tifr.pages[0].tags
        try:
            if axis == 'X' or axis == 'Y':
                spacing = tifr.pages[0].tags[axis + 'Resolution'].value[1]
            elif axis == 'Z':
                spacing = tifr.imagej_metadata['spacing']
            else:
                raise NotImplementedError(
                    'Getting spacing along {} is not yet implemented'.format(
                        axis))
        except:
            # todo: Find a way to extract spacing from BigStitcher stitched images
            spacing = 1
            warnings.warn(
                'Could not read the spacing.  Spacing has been set to 1, 1, 1.  Fix manually',
            )

        return spacing
예제 #2
0
def Xcorrelation(ventral_file, dorsal_file, z_layer, sf_x, sf_y, sf_z):
    '''
        ventral_file and dorsal_file must have the same dimension size in x and y
        z_layer is the most similar layer in ventral file to the first layer of the dorsal file
        sf_x, sf_y, and sf_z is the initial guess of the shift. the first image of the ventral file is the base to compare
    '''
    # magic-number zone. Following numbers are the searching ranges
    sr_x = 60
    sr_y = 60
    sr_z = 30

    with TFF.TiffFile(ventral_file) as v_tif:
        ventral_tif = v_tif.pages[z_layer]
        ventral_image = ventral_tif.asarray()
        ventral_stack = v_tif.pages[z_layer - round(sr_z / 2):z_layer +
                                    round(sr_z / 2)]
        #ventral_stack = ventral_stack[0].asarray()

    dorsal_first_image = TFF.imread(dorsal_file, key=0)

    repeat = 0
    current_layer = z_layer
    next_layer = 0
    while current_layer != next_layer:
        current_layer = next_layer
        # calculate the correlation in x,y plane
        [ventral_image, dorsal_image] = matchImageSize(ventral_image,
                                                       dorsal_first_image)
        print("Images are matched")
        corr_matrix = narrorwXcorrelation(ventral_image, dorsal_image, sf_x,
                                          sf_y, sr_x, sr_y)
        max_ind = corr_matrix.argmax()
        shift_yx = np.unravel_index(max_ind, corr_matrix.shape)
        print([repeat, shift_yx, corr_matrix[shift_yx[0], shift_yx[1]]])
        plt.subplot().imshow(corr_matrix)
        plt.show()
        dy = round(sr_y / 2) - shift_yx[0]
        dx = round(sr_x / 2) - shift_yx[1]

        # shift the x,y according to what it is found in the above step, and finding the best correlation along z
        n = 0
        corr_array = []
        layer_array = []
        for ventral_layer in ventral_stack:
            ventral_image = ventral_layer.asarray()
            [ventral_image,
             dorsal_image] = matchImageSize(ventral_image, dorsal_first_image)
            [ventral_image, dorsal_image] = shiftImage(ventral_image,
                                                       dorsal_image, dx, dy)
            corr = pearsonCorrelation(ventral_image, dorsal_image)
            corr_array.append(corr)
            layer_array.append(z_layer - round(sr_z / 2) + n)
            n = n + 1
        corr_array = np.asarray(corr_array)
        layer_array = np.asarray(layer_array)
        max_ind = np.argmax(corr_array)
        next_layer = layer_array[max_ind]
        print([repeat, layer_array[max_ind], corr_array[max_ind]])
        ventral_image = ventral_stack[max_ind].asarray()
        repeat = repeat + 1

    [shift_ventral, shift_dorsal] = shiftImage(ventral_image, dorsal_image, dy,
                                               dx)
    TFF.imwrite("ventral_shift.tif", shift_ventral)
    TFF.imwrite("dorsal_shift.tif", shift_dorsal)
def stitchWellsInRAM(wellDict, inputDir, outputDir, resizeTo=None):

    tStart = time.time()

    for well in wellDict.keys():
        t0 = time.time()
        print("Starting on wellID:", well)
        ncols = wellDict[well]['ncols']
        nrows = wellDict[well]['nrows']
        nChans, nTimepoints = wellDict[well]['nChannels'], wellDict[well][
            'nTimepoints']
        nSlices = wellDict[well]['nSlices']
        frame_interval, time_unit = wellDict[well]['frame_interval'], wellDict[
            well]['timeunit']

        pixelDepthDict = {8: "uint8", 16: "uint16", 32: "float32"}
        pixType = pixelDepthDict[wellDict[well]['pixelDepth']]

        xpix, ypix, pixel_resolution = wellDict[well]['xpix'], wellDict[well][
            'ypix'], wellDict[well]['pixel_resolution']
        outWidth = xpix * ncols
        outHeight = ypix * nrows

        outArray = np.empty(
            (nTimepoints, nSlices, nChans, outHeight, outWidth), dtype=pixType)

        print("well array shape:", outArray.shape)

        for r in range(nrows):
            for c in range(ncols):
                t1 = time.time()
                startX = (ncols - c - 1) * xpix
                startY = r * ypix
                loadme = os.path.join(inputDir,
                                      wellDict[well]['positions'][(r, c)][0])
                print("Working on file: ", str(loadme))

                with tiffile.TiffFile(loadme) as tif:
                    inArray = tif.asarray()
                    print("File loaded as array, shape: ", inArray.shape,
                          "loadtime: ", round(time.time() - t1), " s")

                try:
                    outArray[:, :, :, startY:(startY + ypix),
                             startX:(startX + xpix)] = inArray
                except:
                    inArray = np.reshape(
                        inArray, (nTimepoints, nSlices, nChans, xpix, ypix))
                    print("Input array reshaped to: ", inArray.shape)
                    outArray[:, :, :, startY:(startY + ypix),
                             startX:(startX + xpix)] = inArray

                print(
                    "Input array appended to OutArray. Elapsed time for well: ",
                    round(time.time() - t0))

        saveme = os.path.join(outputDir, str(well) + "_stitched.tif")

        if resizeTo != None:
            print("Resizing outArray...")
            old_resolution = pixel_resolution[0] / float(pixel_resolution[1])
            print(
                "Original pixel resolution was: %s / %s = %s px/resolution unit"
                % (pixel_resolution[0], pixel_resolution[1], old_resolution))
            new_resolution = old_resolution * float(resizeTo)
            rational_new_resolution = Fraction(
                new_resolution).limit_denominator()

            pixel_resolution = (rational_new_resolution.numerator,
                                rational_new_resolution.denominator)

            print("New pixel resolution is: %s / %s = %s px/resolution unit" %
                  (pixel_resolution[0], pixel_resolution[1], new_resolution))

            t = time.time()
            outArray = bin_ndarray(
                outArray, ((nTimepoints, nSlices, nChans, outHeight * resizeTo,
                            outWidth * resizeTo))).astype("uint16")
            print("Done in %.2f s with resizing output!" %
                  (round(time.time() - t)))

        bigTiffFlag = outArray.size * outArray.dtype.itemsize > 2000 * 2**20
        print("bigTillFlag set to:", bigTiffFlag,
              "Saving output...(may take a while)")

        metadata = {
            "zStack": bool(1 - nSlices),
            "unit": "um",
            "tunit": time_unit,
            "finterval": frame_interval
        }

        imageJresolution = (pixel_resolution[0] /
                            pixel_resolution[1]) / 10000.0

        save_data = {
            "bigtiff": bigTiffFlag,
            "imagej": True,
            "resolution": (imageJresolution, imageJresolution, None),
            "metadata": metadata
        }

        tiffile.imsave(saveme, outArray, **save_data)

        print("Done with wellID: ", well, "in ", round(time.time() - t0, 2),
              " s")

    print("All done, it took ", round(time.time() - tStart, 2), " s in total!")
def stitchWellsOnDisk(wellDict, inputDir, outputDir, resizeTo=None):
    """
	Avoids loading constituent files in to RAM. Stitches and rescales frame-by frame instead.
	Args:
		wellDict: (dict) wellID:filename
		inputDir: str or os.path
		outputDir: str or os.path
		resizeTo: Factor to rezie to, mus be a factor of 2

	Returns:

	"""

    tStart = time.time()

    for well in wellDict.keys():
        t0 = time.time()
        print("Starting on wellID:", well)
        ncols = wellDict[well]['ncols']
        nrows = wellDict[well]['nrows']
        nChans = wellDict[well]['nChannels']
        nTimepoints = wellDict[well]['nTimepoints']
        nSlices = wellDict[well]['nSlices']
        frame_interval = wellDict[well]['frame_interval']
        time_unit = wellDict[well]['timeunit']
        pixelDepthDict = {8: "uint8", 16: "uint16", 32: "float32"}
        pixType = pixelDepthDict[wellDict[well]['pixelDepth']]
        xpix = wellDict[well]['xpix']
        ypix = wellDict[well]['ypix']
        pixel_resolution = wellDict[well]['pixel_resolution']

        outWidth = xpix * ncols
        outHeight = ypix * nrows

        if resizeTo != None:

            print("Resizing outArray...")
            old_resolution = pixel_resolution[0] / float(pixel_resolution[1])
            print("old resolution; {}, rational: {}".format(
                old_resolution, pixel_resolution))
            new_resolution = old_resolution * resizeTo
            rational_new_resolution = Fraction(
                new_resolution).limit_denominator()

            pixel_resolution = (rational_new_resolution.numerator,
                                rational_new_resolution.denominator)

            print("new resolution; {}, rational: {}".format(
                new_resolution, pixel_resolution))
            outArray = np.empty((nTimepoints, nSlices, nChans,
                                 outHeight * resizeTo, outWidth * resizeTo),
                                dtype=pixType)

        else:
            outArray = np.empty(
                (nTimepoints, nSlices, nChans, outHeight, outWidth),
                dtype=pixType)

        full_frame_buffer = np.empty((1, nSlices, nChans, outHeight, outWidth),
                                     dtype=pixType)

        print("output well array shape: {}, full_frame_array shape; {}".format(
            outArray.shape, full_frame_buffer.shape))

        for frame in range(nTimepoints):
            t1 = time.time()
            print("Working on frame: {}".format(frame))
            for row in range(nrows):
                for col in range(ncols):
                    #get name of file at this row, col position
                    loadme = os.path.join(
                        inputDir, wellDict[well]['positions'][(row, col)][0])
                    #X/Y coordinates for insertion of subframe
                    startX = (ncols - col - 1) * xpix
                    startY = row * ypix

                    #is_ome is set to False so that all .asarray calls will return the same shape
                    with tiffile.TiffFile(loadme, is_ome=False) as tif:
                        #only get current frame with channels and slices as an array
                        if nSlices == 1:
                            slice_to_load = slice(frame * nChans,
                                                  (frame + 1) * nChans)
                        else:
                            slice_to_load = slice(frame * (nChans + nSlices),
                                                  (frame + 1) *
                                                  (nChans + nSlices))

                        inArray = tif.asarray(key=slice_to_load)

                        try:
                            full_frame_buffer[:, :, :, startY:(startY + ypix),
                                              startX:(startX + xpix)] = inArray
                        except:
                            inArray = np.reshape(
                                inArray, (1, nSlices, nChans, xpix, ypix))
                            #print("Input array reshaped to: {}".format(inArray.shape))
                            full_frame_buffer[:, :, :, startY:(startY + ypix),
                                              startX:(startX + xpix)] = inArray
                        print(
                            "Frame: {}, Row: {}, Col: {} loaded from file: {} array shape: {}"
                            .format(frame, row, col, tif.filename,
                                    inArray.shape))

            if resizeTo != None:

                resized_frame_buffer = bin_ndarray(
                    full_frame_buffer,
                    (1, nSlices, nChans, outHeight * resizeTo,
                     outWidth * resizeTo))
                print("full_fame_buffer resized to {}".format(
                    resized_frame_buffer.shape))

                outArray[frame, :, :, :, :] = resized_frame_buffer

            else:
                outArray[frame, :, :, :, :] = full_frame_buffer

            print(
                "Frame, done in {} s. Elapsed time for well: {} min,  Since start: {} min"
                .format(round((time.time() - t1), 1),
                        round((time.time() - t0) / 60),
                        round((time.time() - tStart) / 60)))

        saveme = os.path.join(outputDir, str(well) + "_stitched.tif")
        bigTiffFlag = outArray.size * outArray.dtype.itemsize > 2000 * 2**20
        print("bigTillFlag set to:", bigTiffFlag,
              "Saving output...(may take a while)")

        metadata = {
            "zStack": bool(1 - nSlices),
            "unit": "um",
            "tunit": time_unit,
            "finterval": frame_interval
        }
        imageJresolution = (pixel_resolution[0] /
                            pixel_resolution[1]) / 10000.0

        save_data = {
            "bigtiff": bigTiffFlag,
            "imagej": True,
            "resolution": (imageJresolution, imageJresolution, None),
            "metadata": metadata
        }

        tiffile.imsave(saveme, outArray, **save_data)

        print("Done with wellID: ", well, "in ", round(time.time() - t0, 2),
              " s")
    print("All done, it took ", round(time.time() - tStart, 2), " s in total!")
def filenamesToDict(indir, wellNameDict=None):
    """
	Transforms the (ome).tif stack-files in a directory into a dictionary.

	Filenames must conform to the following general pattern:
	..._wellID-xxx_threeDigitRowNumber_threeDigitColNumber...

	:param
	indir: path to directory with files from a multiwell mosaic experiment
	wellNameDict: Dictionary of names to give the wells from the wellID-number

	property_dict = 'nrows': (int) No. of rows in well
					'ncols': (int) No. of columns in well
					'nChans': (int) No. of channels in image
					'xpix': (int) No. pixels in X-dimension of images
					'ypix': (int) No. pixels in Y-dimension of images
					'frame_interval': (float) No. of time units between frames
					'timeUnit': (str) time unit
					'pixres': (float) size of pixels in resolution units
					'resUnit': (str) spatial resolution unit
					'pixelType':(str) pixeldepth of image
					'positions': position_dict gives file at position (row,col)
					'files':(list) names of files in well
					'isConcat':(bool) If the sequence is split in to multiple files
					'OME-XML':None <- Not implemented yet

	position_dict = {(row, col):filename(s)}



	:return: Dictionary with wellID:property_dict
	"""
    # Ingore non-.tif files in indir
    filenames = [fname for fname in os.listdir(indir) if ".tif" in fname]
    filenames.sort()

    wellDict = {}

    isConcat = False

    #Regex used to flexibly identify wells, rows, columns, and split files from filenames

    #Matches any number of digits preceded by "MMStack_" and followed by "-"
    well_regex = re.compile("(?<=MMStack_)\d+(?=-)")

    #Matches three digits preceded by three digits and "_"
    column_regex = re.compile("(?<=\d{3}_)\d{3}")

    #Matches three digits preceded by three digits and "_"
    row_regex = re.compile("(?<=_)\d{3}(?=_)")

    #Matches a digit preceded by three digits and "_", followed by ".ome"
    concat_regex = re.compile("(?<=\d{3}_\d{3}_)\d(?=\.ome)")

    first_file = os.path.join(indir, filenames[0])
    print(
        "Opening the first file: \"%s\" to read its MicroManager metadata..." %
        first_file)

    with tiffile.TiffFile(first_file) as tif:

        frames = len(tif.pages)
        page = tif[0]
        print("There are %s frames and their shape is %s" %
              (frames, page.shape))

        pixres = page.tags['x_resolution'].value  #Assumes equal x/y resolution
        resoloution_unit = page.tags['resolution_unit'].value
        resoloution_unit = {
            1: 'none',
            2: 'inch',
            3: 'centimeter'
        }[resoloution_unit]
        pixelDepth = page.tags['bits_per_sample'].value
        omexml = page.tags['image_description'].value

        try:
            meta_data = tif.micromanager_metadata
            frame_interval = meta_data['summary']['WaitInterval']
            ypix, xpix = meta_data['summary']['Height'], meta_data['summary'][
                'Width']
            nChannels = meta_data['summary']['Channels']
            nSlices = meta_data['summary']['Slices']
            nTimepoints = frames / (nChannels * nSlices)

        except:
            warnings.warn("Metadata read error!")
            print(
                "Something is wrong with the MicroManager metadata, replacing all values with defaults, this means"
                " that SCALING IS NOT CORRECT and the image stack is flattened over channels and slices!"
            )
            frames = page.shape[0]
            meta_data = None
            frame_interval = 1
            ypix, xpix = page.shape[1], page.shape[2]
            nChannels = 1
            nSlices = 1
            nTimepoints = frames

    for f in filenames:
        #Extract positioning information from filename with regex
        wellID = int(well_regex.search(f).group())

        if wellNameDict != None:
            wellID = wellNameDict[wellID]

        rowNumber = int(row_regex.search(f).group())
        columnNumber = int(column_regex.search(f).group())
        concat = concat_regex.search(f)
        if concat != None:
            isConcat = True

        #If there is no key for wellID in wellDict -> create a dict of properties
        if wellDict.get(wellID) == None:
            wellDict[wellID] = {
                'nrows': 1,
                'ncols': 1,
                'nChannels': int(nChannels),
                'nSlices': int(nSlices),
                'xpix': int(xpix),
                'ypix': int(ypix),
                'nTimepoints': int(nTimepoints),
                'frame_interval': (frame_interval / 1000.0),
                'timeunit': 's',
                'pixel_resolution':
                pixres,  #resolution stored as rational in tif tag
                'resoloution_unit': resoloution_unit,
                'pixelDepth': pixelDepth,
                'positions': {},
                'files': [],
                'isConcat': isConcat,
                'OME-XML': omexml
            }

        #Populate Properties
        wellDict[wellID]['nrows'] = max(rowNumber + 1,
                                        wellDict[wellID]['nrows'])
        wellDict[wellID]['ncols'] = max(columnNumber + 1,
                                        wellDict[wellID]['ncols'])

        #List of filenames for the well
        wellDict[wellID]['files'].append(f)

        #Dict with (row, column):(list) filename(s)
        if wellDict[wellID]['positions'].get(
            (rowNumber, columnNumber)) == None:
            wellDict[wellID]['positions'][(rowNumber, columnNumber)] = [f]
        else:
            wellDict[wellID]['positions'][(rowNumber, columnNumber)].append(f)
            wellDict[wellID]['positions'][(rowNumber, columnNumber)].sort()
            wellDict[wellID]['isConcat'] = isConcat

    print(
        "wellDict created, proceed to choosing output directory and renaming wells."
    )
    return wellDict
def do_it_all(indir, fname, outdir,
              maxFrameToAnalyze=200,
              px_resolution = 5.466,
              time_resolution = 5.0,
              r_max=300,
              r_step=1,
              n_sigma = 5,
              intervalWidth=10,
              saveFigFlag = False):
    """

    :param indir:
        Input directory
    :param fname:
        Name of input file
    :param outdir:
        Where to save graphs and output data
    :param stopFrame:
        (int) Last frame to analyze output
    :param px_resolution:
        (float/int) Pixel resolution of input images in um/pixel
    :param time_resolution:
        (float) Time resolution of input images in frames/hour
    :param r_max:
        (int) maximum distance (in pixels) to calculate angles for
    :param r_step:
        (int) increment size of distance r (in pixels) during angle calculations
    :param n_sigma:
        (float) significance level that determines the correlation length
    :param intervalWidth:
        (int) width in frames to integrate angle data for, i.e. temporal integration
    :return:
        (dict) output data for further processing

    """
    # PIV parameters
    piv_params = dict(window_size=32,
                      overlap=16,
                      dt=1,
                      search_area_size=36,
                      sig2noise_method="peak2peak")

    px_scale = px_resolution * piv_params["overlap"]
    piv_scaler =  px_resolution*time_resolution # um/px * frames/hour = um*frames/px*hours


    print("Working on: %s" % (fname))
    t0 = time.time()

    with tiffile.TiffFile(os.path.join(indir, fname)) as tif:
        arr = tif.asarray()

    arr = arr[0:maxFrameToAnalyze]
    arr = arr.astype(np.int32) #openPIV only works with 32bit arrays


    t1 = time.time()
    print("It took %.2f s to load %s, and has shape: %s, now processing PIV..." % (t1-t0, fname, arr.shape))
    t2 = time.time()
    arr_u, arr_v, arr_x, arr_y = openPIV_array_processor(arr, stopFrame=arr.shape[0], **piv_params)

    print("It took %.2f s to process PIV, and output arrays have the shape: %s" % (t2-t1, arr_u.shape))
    t3 = time.time()

    inst_order_params, align_idxs, speeds, timepoints = [], [], [], []

    for frame in range(arr_u.shape[0]):

        iop = instantaneous_order_parameter(arr_u[frame], arr_v[frame])
        inst_order_params.append(iop)

        ai = alignment_index(arr_u[frame], arr_v[frame], alsoReturnMagnitudes=True)
        aidx = np.nanmean(ai[0])
        align_idxs.append(aidx)
        speed = np.nanmean(ai[1])*piv_scaler #px/frame * um*frames/px*hours -> um/hour
        speeds.append(speed)

        timepoint = frame*(1/float(time_resolution))
        timepoints.append(timepoint)


    if saveFigFlag:

        plt.plot(timepoints, speeds, 'r', label=fname[:6])
        plt.xlabel("Time (h)")
        plt.ylabel("Mean speed (um/h)")
        plt.title("Velocity vector magnitudes (speed)")
        plt.legend()
        savename = outdir + fname[:-4] + "_speed.pdf"
        plt.savefig(savename, bbox_inches='tight', pad_inches=0)
        plt.close()

        plt.plot(timepoints, align_idxs, 'b', label=fname[:6])
        plt.xlabel("Time (h)")
        plt.ylabel("Align index")
        plt.title("Alignment index")
        plt.legend()
        savename = outdir + fname[:-4] + "_alignIndex.pdf"
        plt.savefig(savename, bbox_inches='tight', pad_inches=0)
        plt.close()

        plt.plot(timepoints, inst_order_params, 'g', label=fname[:6])
        plt.xlabel("Time (h)")
        plt.ylabel("$\psi$")
        plt.title("Instantaneous order parameter ($\psi$)")
        plt.legend()
        savename = outdir + fname[:-4] + "_iop.pdf"
        plt.savefig(savename, bbox_inches='tight', pad_inches=0)
        plt.close()

        t4 = time.time()
        print("It took %.2f s to do Alignment indexes, order params and speeds" % (t4-t3))

    metaResults = {}


    #temporal integration
    for interval in range(0, arr_u.shape[0], intervalWidth):

        results={}
        tmp_u = arr_u[interval:interval + intervalWidth]
        tmp_v = arr_v[interval:interval + intervalWidth]

        for t in range(tmp_u.shape[0]):

             for diagonal in range(0, min(tmp_u.shape[1], tmp_u.shape[2])): #follow the diagonal
                 results = get_all_angles(tmp_u[t], tmp_v[t], (diagonal,diagonal), results,
                                          r_max=r_max, r_step=r_step, r_min=1)

        metaResults[interval] = dict(results)

    lastrs = [["n_sigma", "radius_px", "max_sign_r_um"]]

    lcorrs = {} #interval:correlation length in um

    for interv in sorted(metaResults.keys()):
        r = []
        avg_angle = []
        results = metaResults[interv]

        for radius, angles_list in results.items():

            if (len(angles_list) == 0):
                print("Empty value at interval %i and r=%i" % (interv, radius))
                break

            sanitized_angles = [a for a in angles_list if a <= 1.0] #Sometimes openPIV output wierd values
            if len(sanitized_angles) != len(angles_list):
                print("Bad angles at interval %i and radius %i, number ok: %i, not ok: %i" %
                      (interv, radius, len(sanitized_angles), len(angles_list)-len(sanitized_angles)))
            mean_angle = np.nanmean(sanitized_angles)
            mean_angle_degrees = math.acos(mean_angle) * (180 / math.pi)
            sd_angles = np.nanstd(sanitized_angles)
            sd_angles_degrees = math.acos(sd_angles) * (180 / math.pi)
            SEM_angles = sd_angles_degrees / math.sqrt(len(sanitized_angles))

            r.append(radius * px_scale)
            avg_angle.append(mean_angle_degrees)

            if (mean_angle_degrees + n_sigma * SEM_angles >= 90) and (interv not in lcorrs) and (len(r) != 0):
                #TODO interval_center = interval + intervalWidth/2 * time_resolution
                lcorrs[interv] = r[-1]
                print("%i-sigma reached at r=%i on interval %i, last significant distance was %.2f um" % (n_sigma, radius, interv, r[-1]))


        label = "interval: " + str(((interv) / time_resolution)) + " - " + \
                str((interv + intervalWidth) / time_resolution) + " h, Lcorr = " + \
                str(int(lcorrs[interv])) + " um"

        plt.plot(r, avg_angle, label=label)

    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, mode="expand")
    plt.title("Average angle between velocity vectors " + fname[:6])
    plt.xlabel("Distance in um")
    plt.ylabel("Mean angle (degrees)")

    if saveFigFlag:
        savename = outdir + fname[:-4] + "_cvv.pdf"
        plt.savefig(savename, bbox_inches='tight')

    else:
        plt.show()
    print("All done in %.2f s" % (time.time()-t0))
    plt.close()

    return (inst_order_params, align_idxs, speeds, timepoints, lcorrs, metaResults)